UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

A DIGITAL MODEL FOR STREAMFLOW ROUTING BY CONVOLUTION METHODS

By W. Harry Doyle, Jr., James O. Shearman, Gloria J. Stiltner, and William R. Krug

U. S. GEOLOGICAL SURVEY
Water-Resources Investigations Report 83-4160

UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary

GEOLOGICAL SURVEY Dallas L. Peck, Director

For additional information write to:

U. S. Geological Survey, WRD
Gulf Coast Hydroscience Center
National Space Technology Laboratories
NSTL, Mississippi 39529

Copies of this report can be purchased from:

Open-File Services Section U. S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225

CONTENTS

Abstract
Introduction
Description of model
Flow routing methodology
Diffusion analogy method
Single linearization
Multiple linearization
Storage-continuity method
Applications of the model
Calibration, verification and simulation
Hypothetical examples
Field examples
System organization and input data requirements
Time data card
Streamflow computations
Instruction card format
Header card format
Parameter card format
Storage-continuity method
Diffusion analogy method: single linearization
Diffusion analogy method: multiple linearization-
Discharge/wave-dispersion/wave-celerity data
cards
Data comparison
Instruction card format
Title card format
Data plotting
Instruction card format
Title card format
Data printout
Instruction card format
Title card format
Restart
Instruction card format
Selected references
Appendix A. Generalized program flow chart
Appendix B. Description of CONROUT subroutines
Appendix C. Program listing
Appendix D. Illustrative example of using CONROUT Model
Statement of problem and summary of results
Modeling processing instructions
CONROUT model run and output

ILLUSTRATIONS

igure l.	Streamflow routing along a stream reach using a unit-response function and the convolution technique			
2.	Stream reach for hypothetical streamflow routing example			
3.	Hypothetical stream reach with proposed reservoir			
4.	Hypothetical streamflow routing example for multiple reaches			
5.	Map of study basin and its location in Wisconsin			
6.	Schematic diagram of the Wisconsin River			
7.	System organization of CONROUT			
8.	Flow chart of operations for streamflow computations			
D1.	The Klamath River study area			
D2.	Comparison of observed and simulated discharge at station 11520500			
р3	Flowchart of CONROUT and related programs			
D4.	JCL for daily-value retrieval from WATSTORE			
D5.	Example of WATSTORE daily values format for the 1974 water year			
D6.	JCL for executing G740 program			
D7.	Example of a file of records for modeling format			
D8.	JCL for executing DATA SCAN program			
D9 •	JCL for executing CONROUT program			
D10.	JCL for executing streamflow statistics programs			

TABLES

		F
Table 1.	Drainage areas upstream from sites and	
	availability of surface-water records	
2.	Model parameters for Wisconsin River study	
3.	Program functions and data card requirements	
4.	Instructions for streamflow computations	
5.	Instruction card format for streamflow computations function	
6.	An example of four streamflow computation instruction combinations	
7.	Lagging and routing operations for streamflow computations function	
8.	Header card format for streamflow computations	
9.	Parameter card format: storage-continuity method	
10.	Parameter card format: diffusion analogy method, single linearization	
11.	Parameter card format: diffusion analogy method, multiple linearization	
12.	Formats of discharge/wave-dispersion/wave-celerity	
13.	Instruction card format for the data comparison function	
14.	Instruction card format for the data plotting function	
15.	Instruction card format for the data printout	
16.	Instruction card format for restart function	
D1.	Gaging stations used in the Klamath River flow-routing study	
D2.	Calibrated model parameters for Klamath system reaches	
D3.	Calibration results of routing model for station	
D4.	Verification results of routing model for station	

METRIC CONVERSIONS

Inch-pounds units used in this report may be converted to International System of Units (SI) of measurements by the following conversion factors:

Multiply Inch-pound units	By	To obtain SI units
inch (in)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.6093	kilometer (km)
acre	0.4047	hectare (ha)
square foot (ft ²)	0.0929	square meter (m ²)
square mile (mi^2)	2.590	square kilometer (km²)
cubic foot per second (ft^3/s)	0.02832	cubic meter per second (m^3/s)

A DIGITAL MODEL FOR STREAMFLOW ROUTING

BY CONVOLUTION METHODS

By W. Harry Doyle, Jr., James O. Shearman,
Gloria J. Stiltner, and William R. Krug

ABSTRACT

U.S. Geological Survey computer model, CONROUT, for routing streamflow by unit-response convolution flow-routing techniques from an upstream channel location to a downstream channel location has been developed and documented. Calibration and verification of the flow-routing model and subsequent use of the model for simulation is also documented. Three hypothetical examples and two field applications are presented to illustrate basic flow-routing concepts. Most of the discussion is limited to daily flow routing since, to date, all completed and current studies of this nature involve daily flow routing. However, the model is programmed to accept hourly input data.

INTRODUCTION

CONROUT, a Digital Model for Streamflow Routing by Convolution Methods, can be used to route a streamflow hydrograph from an upstream location to a user-defined location downstream and produce an outflow discharge hydrograph. The model uses convolution techniques for streamflow routing computations. A convolution model treats a stream reach as a linear, one-dimensional system in which the input (upstream hydrograph) is convoluted with the unit response of the system to determine the output (downstream hydrograph). Two options are available in CONROUT for determining the unit response. Successive downstream routings involve stepwise routing from point to point using the previously computed outflow hydrograph as the inflow hydrograph to the next reach. Also, flows from tributaries, distributaries, and reservoirs have to be considered and adjustments made to compensate for these components.

The product of CONROUT is a simulated outflow discharge hydrograph at the end of the reach. The routing time step is either hourly or daily. The program will also compare simulated discharges to observed discharges (SUBROUTINE COMPAR) for calibration and will also plot (SUBROUTINE PLOT) the results. CONROUT can be used to estimate streamflow for periods of missing records. These data can then be used in statistical analyses to determine streamflow characteristics.

The purpose of this report is to provide a user's manual for CONROUT. The many options and features of CONROUT are described and discussed. Also, an overview of several hypothetical and field flow-routing applications is presented to aid the user. In addition, information is included for retrieving and transforming data for input to CONROUT.

DESCRIPTION OF MODEL

CONROUT is a streamflow routing model which may be used to simulate either hourly or daily streamflow. The model may be used to: (1) copy hydrographs; (2) combine hydrographs; (3) change the timing of hydrographs by lagging one or more routing intervals; (4) multiply hydrographs by ratios; and (5) route hydrographs to downstream locations. These five operations provide the user many different possibilities for streamflow simulation. For example. depending upon where simulation information is needed, a simple transposition of an upstream hydrograph to a downstream location might be sufficient. This can be accomplished by copying the upstream hydrograph directly. In other situations, reach characteristics influencing time of travel, attenuation and dispersion might be such that the upstream hydrograph can be transposed downstream in size and shape as is, but delayed in timing by one or more routing intervals. When reach characteristics are important enough to affect the shaping of the downstream hydrograph then the model can be used to route upstream streamflow to downstream locations. The routing process does consider the effects of wave movement and attenuation and dispersion. Finally, the ability to combine hydrographs and proportion hydrographs by multiplying by ratios enables the user to account for tributary inflows and intervening ungaged flows that may be indexed to a gaged station streamflow.

Various combinations of the above operations are also possible. Furthermore, results from one operation (or combination of operations) can be used as input to a subsequent operation (or combination of operations). Such stepwise computations can be made within a single program execution or by a series of program executions. Thus, the model is applicable to modeling studies ranging in scope from a single stream reach to an entire watershed.

CONROUT's hydrologic component for streamflow routing consists of a unit-response function and the convolution technique of Keefer (1974). The unit-response function defines the discharge at the downstream end of a modeling reach as a function of the inflow at the upstream end. Basically, the unit-response function defines the percentage of an upstream inflow that will arrive at the downstream end during the unit time (hourly or daily) and each successive unit time. Discharge at the downstream end for each unit time is the summation of the contribution of inflow at the upstream end from that unit time and each preceding unit time.

The behavior of a flood wave in a channel between an upstream location A and a downstream location B is controlled by the physical characteristics of the reach between the two locations. The type of physical setting along the channel influences the unit response which is reflected in the attenuation and dispersion of a flood wave as it moves along the reach. The determination of the unit response enables us to predict the resulting hydrograph shape as a flood wave proceeds downstream.

Convolution is a concept basic to linear system theory. A system input is combined through the convolution process with a system response function to produce the predicted system output. In the case of flow routing the system input is the upstsream inflow hydrograph, the system response function is the unit-response function, and the system output is the resultant downstream discharge hydrograph. The convolution technique is essentially identical to the unit hydrograph computation in that rainfall is convoluted with a unit hydrograph to produce the basin discharge hydrograph.

The convolution technique can be applied in streamflow routing because the system is assumed to be linear and individual responses may be superimposed to obtain a composite response. The technique first requires determining the system's response to a single unit of input. As an example, figure la illustrates that the unit-response function for the reach between A and B distributes a unit input of 1 ft³/s for a duration of 1 day at A into a hydrograph at B. The unit-response ordinates (0.12, 0.38, 0.30, 0.15,and 0.05) are used to distribute the 1 ft^3/s inflow that passes A into 5 separate parts, each lagged by a time step of 1 day as seen in figure 1b. Figure 1c shows that with the same unit-response ordinates as in figure la that 10 days of inflow at A are distributed, lagged, and accumulated accordingly over a 14 day perid at B. Figure 1d is a graphical representation of figure lc with the system input (inflow hydrograph at A) being disaggregated into separate individual unit responses (in the lower part of figure 1d) and then accumulated into the composite system output (outflow hydrograph at B).

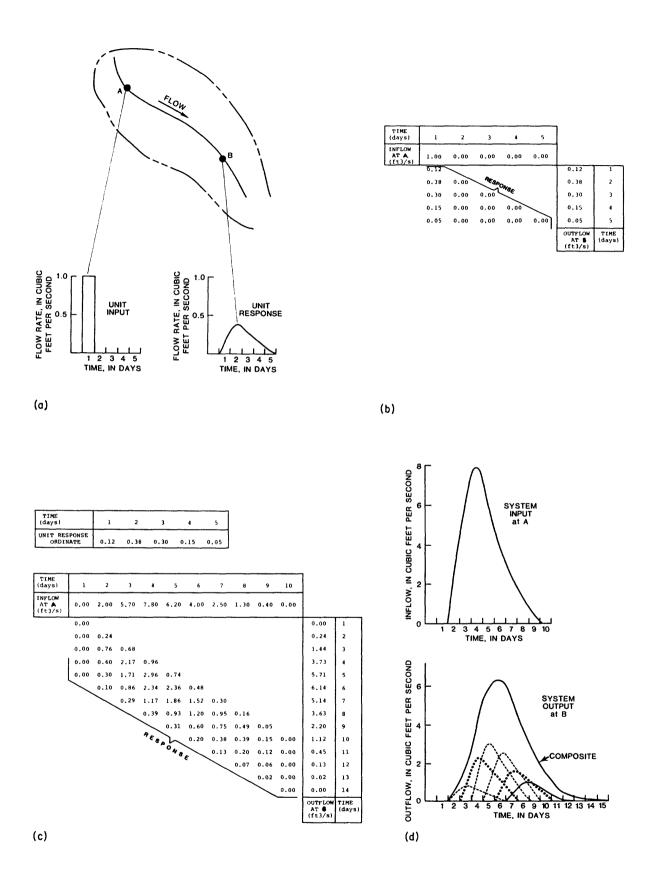


Figure 1.— Streamflow routing along a stream reach using a unit-reponse function and the convolution technique.

Determination of the system's response and convoluting the response with an upstream inflow to produce a downstream discharge is not the total solution for most flow routing problems. convolution process makes no accounting whatsoever for streamflow from the intervening area between the upstream and downstream locaations. Such streamflow may be totally unknown or some combinaof gaged and ungaged streamflow. Of course the problem of intervening streamflow can be minimized in some cases by proper selection of routing reaches. However, most flow-routing applications will require some procedure for estimating, at least in part, intervening streamflow and combining these streamflow with routed hydrographs. An estimating technique that should prove satisfactory in many instances is the multiplication of known streamflow at an index gaging station by a drainage-area ratio. drainage-area ratio is computed as the ratio of intervening ungaged drainage area to the drainage area of one or more index stations. Such a procedure can be accomplished easily and directly when using CONROUT. Some flow-routing problems will require varying degrees of increased complexity for estimating intervening streamflow. Such cases require that the streamflow estimates be made externally from CONROUT. However, CONROUT can treat such estimates as tributary inflows if they are stored in compatible data files.

FLOW ROUTING METHODOLOGY

CONROUT provides the user two different methods, diffusion analogy and storage-continuity for determining the unit response. Both methods will compute a single unit-response function while the diffusion analogy method can also be used to compute multiple unit-response functions.

Diffusion Analogy Method

The differential equations derived by Saint-Venant (1871) for one-dimensional unsteady flow are the theoretical basis for the diffusion analogy method. Assuming no lateral inflow the Saint-Venant equations for channel flow are a continuity equation:

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0 \tag{1}$$

and a momentum equation:

$$\frac{1}{g} \frac{\partial V}{\partial t} + \frac{V\partial V}{\partial x} + \frac{\partial Y}{\partial x} + S_f - S_o = 0$$
 (2)

in which

Q = volumetric rate of flow,

A = area of flow,

x = longitudinal distance along channel,

t = time.

Y = depth of flow,

V = average cross-sectional velocity,

g = acceleration due to gravity,

 $S_f = friction slope, and$

 S_0 = bed slope.

These complex equations have no analytical solutions, except for cases where the channel geometry is unform and the non-linear properties of the equations are neglected or linearized. However, with numerical techniques and computers, the equations are solvable.

While flow routing models use the continuity equation as shown in equation 1, the momentum equation may be used in the form of equation 2 or in an abbreviated form depending on which terms are retained. The individual terms in the momentum equation from left to right are, respectively, dimensionless measures of the local and

to right are, respectively, dimensionless measures of the local and convective acceleration $\begin{pmatrix} 1 & \partial V & V\partial V \\ - & - & + & \\ g & \partial t & g\partial x \end{pmatrix}$, the pressure $\begin{pmatrix} \partial y \\ \partial x \end{pmatrix}$, frictional (S_f), and gravity (S_o) forces. Models that retain all five terms

 (S_f) , and gravity (S_O) forces. Models that retain all five terms are called complete dynamic models. If the acceleration terms are neglected, the resulting equation is referred to as the diffusion wave method, and if, additionally, the pressure term is dropped, the resulting equation is referred to as the kinematic wave method.

The kinematic wave and diffusion wave approximations of the momentum equation provide simpler and faster computer solutions than the full dynamic equation and therefore are often used instead of the complete dynamic model. The choice of the approximation depends on which terms must be retained in equation 2 to accurately describe the stream system. Henderson (1966) gives the following values for terms of the momentum equation taken from a fast-rising flood for an actual river in steep alluvial country:

So,
$$\frac{\partial y}{\partial x}$$
 $\frac{v \partial v}{g \partial x}$ $\frac{1}{g} \frac{\partial v}{\partial t}$
Feet per/mile 26, 1/2, 1/8 to 1/4, 1/20

These figures were computed for a flood in which the discharge increased from $10,000~\rm ft^3/s$ to $150,000~\rm ft^3/s$ and decreased again to $10,000~\rm ft^3/s$ within 24 hours. Even in this case, where the acceleration terms were comparatively large, they still are not as important as the bed slope term (S_0) . In some situations, however, the discharge and bed slope can determine the magnitude of the other terms. On very small slopes $(S_0~\rm small)$ the pressure term might well be the same order of magnitude as S_0 . If the discharge rises fast, then all terms may be important (especially on flat to moderate slopes). Omitting even small terms (in these situations) from the equation can introduce errors into the solution.

It has been shown repeatedly in flow-routing applications that the kinematic wave approximation always predicts a steeper wave with less dispersion and attenuation than may actually occur. This can be traced to the approximations made in the development of the kinematic wave equations wherein the momentum equation is reduced to a uniform flow equation of motion that simply states the friction slope is equal to the bed slope. If the pressure term is retained in the momentum equation (diffusion wave method), then this will help to stop the accumulation of error that occurs when the kinematic wave approximation procedure is applied.

The more general diffusion wave model reduces to the diffusion analogy method by rewriting the continuity and momentum equations for a unit-width channel in terms of unit discharge (q) and depth (y). The equations are then combined and linearized about a reference discharge. The resulting diffusion equation is as follows (Keefer, 1974):

$$\frac{\partial q}{\partial t} = K_0 \frac{\partial^2 q}{\partial x^2} - C_0 \frac{\partial q}{\partial x}$$
 (3)

in which

q = discharge per unit width,

t = time.

x = distance,

 K_0 = wave dispersion or damping coefficient, and

 C_0 = flood wave celerity.

 $K_{\mathbf{O}}$ controls the spreading of the wave and $C_{\mathbf{O}}$ controls the traveltime.

The wave dispersion coefficient, K_0 (in units of ft^2/s), can be computed for a stream reach by the equation

$$K_{O} = \frac{Q_{O}}{2 S_{O} W_{O}} \tag{4}$$

where

 ho_o = stream discharge in ft³/s, S_o = average bed slope in ft/ft, and W_o = average channel width for a particular study reach in ft.

The flood wave celerity, $C_{\rm o}$ (in units of ft/s), can be computed from

$$C_{O} = \frac{1}{W_{O}} \frac{dQ_{O}}{dy_{O}}$$
 (5)

where (dQ_o/dy_o) in ft^2/s is the slope of the rating curve (stage-discharge relation) at Q_o ; and W_o is as previously defined. Physically a high C_o value means the flood wave will arrive sooner than one at a lower C_0 value, and a high K_0 value results in a hydrograph being flatter and more spread out than that resulting from using a low Ko value.

The physical characteristics of the channel used to determine $K_{\rm O}$ and $C_{\rm O}$ in equations 4 and 5 should be representative of the entire reach. In natural channels, they vary throughout the reach. Therefore, the initial estimated $K_{\rm O}$ and $C_{\rm O}$ values will probably require adjustment during model calibration when simulated data are compared to observed data.

Keefer and McOuivey (1974) expressed the solution of equation 3 corresponding to specific boundary conditions by

$$q(x,t) = \frac{1}{(4\pi K_0)^{1/2}} \frac{x}{t^{3/2}} \exp \left[\frac{-(C_0 t - x)^2}{4K_0 t} \right]$$
 (6)

where π is a constant (3.1415927). This equation expresses the instantaneous unit response of a system at location x and time t. It can be seen that with K_0 , C_0 and x as parts of equation 6, that the physical characteristics of the channel such as bed slope, width and length determine the shape and time of the unit output response of the system. An assumption here is that channel flow losses and gains are negligible.

A mathematical tool, the convolution integral, can be used to obtain output discharges O(x,t) by integrating the system response(s) and upstream discharges over a time interval from 0 to t or

$$Q(x,t) = \int_{0}^{t} O(0,t-\tau) h(\tau) d\tau$$
 (7)

where equation 6 is computed for a given x and replaces $h(\tau)$ in equation 7, and O(x,t) is the discharge at the downstream location.

Single Linearization

The single linearization method linearizes around a single discharge; therefore, only one K_0 and C_0 are used. However, wave celerity and dispersion can change with discharge. The computed output may be distorted when wide variations in discharge are considered (Keefer and McQuivey, 1974). Low flows arrive too soon and are over-damped if the model is linearized about a high discharge, whearas high flows arrive late and are under-damped if the model is linearized around a low discharge. Nonetheless, the single linearization method is the easiest and cheapest to use in the model. Also, it is unconditionally stable and mass conservation is guaranteed. Therefore, it is recommended if the magnitude of flow peaks is the primary concern and timing errors are not critical (Keefer, 1976). If flow duration is of concern, then the multiple linearization option should be considered.

Multiple Linearization

Single linear system flow routing models suffer from two major drawbacks. First, single linearization prevents such models from correctly predicting wave celerity and wave dispersion over a wide range of discharge. The range over which a single response function may be used is determined by the stream characteristics. Second, single linear system models are not capable of accurate predictions under backwater conditions. No provision is made for downstream boundary influence. Multiple linearization will correct the first problem but not the second.

It is well documented in the literature (Harley, 1967, Schwarz and Friedland, 1965) that stream channels behave nearly as single linear systems over small discharge ranges. Multiple linearization simply couples several such systems together and divides the inflow among the systems in an appropriate way. A multiple convolution of the divided inputs is performed with the several response functions, and the results are recombined to form the predicted outflow hydrograph.

The difficult part of multiple linearization is selecting the increments for dividing up the inflow and computing the response functions. These two problems are handled internally in the program using the methods described by Keefer and McQuivey, 1974.

The primary variables for the multiple linearization method are a table of discharge (Q_0) versus wave celerity (C_0) and a table of discharge (Q_0) versus wave dispersion coefficients (K_0) . The celerity and dispersion at each discharge are computed exactly as for the single response function model, except several discharges of different magnitudes are used instead of one. The program selects an optimum number of response functions and divides the inflow appropriately based on the tables.

Multiple linearization will produce significant improvement in traveltime predictions over a single response function model for hourly data. Root-mean-square errors can typically be reduced from 10 to 50 percent (Keefer and McQuivey, 1974) by using multiple linearization. The improvement in daily routing is less dramatic. In some instances, the errors may actually increase.

Keefer (1976) has compared the multiple linearization technique to a finite-difference technique. In wide rectangular channels the answers are nearly identical when using the procedure described earlier for determining the celerity and dispersion coefficients. In narrow nonrectangular channels some calibration is needed to achieve equivalent accuracy.

Storage-Continuity Method

The Sauer (1973) unit-response model, referred to as the storage-continuity method, does not use the theory of diffusion analogy. Sauer's model derives the unit-response function by modifying a translation hydrograph technique developed by Mitchell (1962). A triangular pulse (Keefer and McOuivey, 1974) is routed through reservoir-type storage and then transformed by a summation curve technique to a unit response of desired duration. Sauer defines a storage coefficient $K_{\rm S}$, as the slope of the storage-discharge relation in the routing reach, and $W_{\rm S}$, the translation hydrograph time base. These two parameters determine the shape of the resulting response function. $K_{\rm S}$ behaves like and is comparable to the wave dispersion coefficient $K_{\rm O}$ in the diffusion analogy method. Also, if the traveltime is held constant, $W_{\rm S}$ is analogous to the wave celerity $C_{\rm O}$.

Sauer (1973) describes in detail the physical significance of $K_{\rm S}$ and $W_{\rm S}$ and how initial estimates can be obtained from available streamflow data or from channel characteristics. $K_{\rm S}$ is equivalent to the time required for the center-of-mass of the flood wave to travel through the reach, minus the travel time, TT, required for the leading edge of the flood wave. The best estimate of $K_{\rm S}$ can be made from the recession of an outflow hydrograph. $W_{\rm S}$ is difficult to estimate, even from actual streamflow records, but fortunately it is rather insensitive and successful routing results can be obtained with crude estimates of $W_{\rm S}$. In some instances, such as for reservoir releases, timing of critical points of the inflow and outflow hydrograph can be determined fairly accurately. In these cases, the travel time of the end-of-runoff (inflection point of the recession) minus the travel time of the leading edge is roughly equal to $W_{\rm S}$.

In Sauer's original model, an attempt was made to adjust the simple linear model to account for variations in traveltime with discharge. Each input discharge was routed using a traveltime based on the antecedent discharge in the reach. This procedure improved the predicted arrival times with streamflow changes but resulted in what Sauer refers to as "stacking" and "separations" in the output hydrograph. These problems resulted from the slowing down or speeding up the entire streamflow rather than varying the velocity of components of the streamflow. The storage-continuity method in CONROUT uses a constant traveltime to avoid these problems.

APPLICATIONS OF THE MODEL

Calibration, Verification and Simulation

Application of a mathematical model typically involves three steps: (1) model calibration, (2) model verification, and (3) system simulation. Sometimes the first two steps are considered one step and referred to as either calibration, verification, or parameter optimization. Nevertheless, the system input and the corresponding system output must be known for some period of time and range of conditions to permit determination of model parameters.

For the typical three-step approach approximately half of the known system input and system output data are utilized for model calibration. The calibration process yields an optimum set of model parameters that best duplicates the relationship between the known system input and system output data. Model parameter optimization techniques range from totally automated objective best-fit procedures to procedures involving various degrees of manual iteration to obtain an "eyeball" best fit.

The remaining observed system input data and the model parameters determined in the calibration step are used to verify the model. Computed system output is compared with corresponding observed system output to evaluate the accuracy of the model. An unsatisfactory comparison means a poor verification and could point out model deficiency, that is, a process that wasn't covered in the calibration phase.

After successful calibration and verification, the model may be used to simulate system output for any input condition(s) of interest. The input data may be actual observed data (for which system output data were not observed) or hypothetical data representing input for any condition(s) to be studied. Resultant simulated system output data may be used to arrive at conclusions relative to the given input condition(s) or to make comparisons of various system input condition(s).

An overview of a typical modeling application was presented above. The following paragraphs relate the above processes to CONROUT applications. Examples presented in the next two sections provide additional detail as well as further clarification of data requirements and approaches to several modeling problems.

Calibration and verification of CONROUT requires concurrent observed streamflow data at both the system input and output sites. The system output site is that downstream station at which it is intended to simulate streamflow data. The input site(s) include any upstream station(s) from which flows are to be routed and any index station(s) to be used for estimating intervening flow. In addition, data describing physical characteristics of the reach are needed to estimate model parameters.

Unfortunately, an automated optimization procedure which can determine optimum model parameters and intervening flow estimates directly from known input and output streamflow data is not available in CONROUT. Therefore, CONROUT calibration requires a high degree of manual iteration and "eyeball" best fitting. Each iteration involves the use of trial estimates of model parameters and intervening flow with known input to compute system output. Correspondingly, computed and observed system output are compared to determine the validity of the trial estimates. Computed mean errors, volume errors and root-mean-square errors are computed by CONROUT and are one primary measure of success. However, for total evaluation of the trial estimates, it is almost imperative to also make some comparisons on a day-to-day basis (using both numerical and plotted daily flow data). Obviously, if long data sequences are used in this process, the task of zeroing in on acceptable estimates of model parameters could be insurmountable. Therefore, CONROUT calibration is based on relatively short segments of the observed data which are chosen to cover a relevant range of flow conditions.

When it appears that the estimated model parameters are satisfactory, model verification is attempted. The final trial estimates from the calibration step are combined with the system input(s) for the entire period for which observed system output data are available. Comparisons of the resultant computed system output with corresponding observed data are made using flow characteristics such as flow volume, flow-frequency relations, and flow-duration relations. Unfavorable comparisons indicate that the model doesn't work or that the modeler may have made a mistake whereas favorable comparisons indicate that the model is suitable for system simulation.

Hypothetical Examples

Examples presented in this section provide a sample of applications for which CONROUT is well suited. These examples are idealized, hypothetical and simple cases designed to introduce some basic concepts of flow-routing. The next section of the report contains actual field examples. Completed modeling studies are documented for the Kentucky River (Shearman and Swisshelm, 1973), the Flambeau River (Krug, 1976), the Susquehanna River (Armbruster, 1977) and the Wisconsin River (Krug and House, 1980). The reader is urged to consult these references for a better understanding of flow-routing applications of varying complexity and requiring diverse approaches.

Example 1

A stream reach for which daily streamflow data have been observed for 10 years at the downstream station (site B) and for 30 years at the upstream station (site A) is illustrated in figure 2. Site B data are concurrent with the middle 10 years of site A data. Knowledge of low-flow frequencies at site B is required to make decisions regarding wastewater discharges into this stream reach.

One obvious approach to obtain the desired information is to use the 10 years of observed data at site B to estimate low-flow frequencies. However, the low-flow events observed at site B over this 10-year period may not be representative of long-term hydrologic conditions, especially if this period was abnormally wet or dry. Use of estimated low-flow frequencies for a 10-year period could thus result in very poor planning.

Another possible approach is utilization of correlation techniques using observed data at both site A and site B to arrive at adjusted low-flow frequency estimates at site B. This involves correlation of low-flow data at sites A and B for the 10 years of concurrent data. This correlation and the long-term (30-year) low-flow frequency estimates at site A are used to adjust the short-term (10-year) low-flow frequency estimates at site B. These adjusted low-flow frequency estimates are equivalent to those that would result from more than 10 but less than 30 years of observed data at site B. The equivalent record length and the reliability of the adjusted low-flow frequency estimates depend upon the strength of the correlation between sites A and B low-flow data for the concurrent period of record.

A third approach would be simulation of 30 years of streamflow data at site B using a streamflow routing model such as CONROUT. A fairly good foundation for model calibration and verification is provided by the 10 years of concurrent data at sites A and B.

Model calibration utilizes relatively short segments of site A streamflow as system input. Several such segments should be selected to cover the entire flow range with emphasis placed on lower flows since low-flow frequency is the desired end product. For each such segment streamflow at site B (system output) may be computed for any trial estimate of model parameters (routing coefficients and intervening flow estimates). These computed flows are compared to corresponding observed flows for each segment. Adequacy of the results is assessed on the basis of visual comparison of computed and observed hydrograph plots and numerical statistics for computed and observed daily flow and total volume differences. Minimum volume errors are not always accompanied by minimum daily volume errors (nor vice versa). Also, the magnitude of errors that are acceptable may vary for different segments. In this low-flow oriented study. for example, significant daily flow errors in the vicinity of a peak may be acceptable if the corresponding volume error is small. Therefore, trial estimates of the model parameters are refined until some optimum balance of errors (both within and among segments) is achieved.

Given:

Sites A with 30 years of streamflow record and B with 10 years of streamflow records.

Required:

Low-flow estimate (that is, Q7, 10) at site B.

Alternative I:

Use 10 years of observed record for the low-flow frequency analysis.

Alternative II:

Correlation of low flows between sites A and B.

Alternative III:

- (1) Use 10 years of observed record for calibration and verification of selected streamflow routing model.
- (2) Use the best unit response and intervening flow estimation determined from above procedure to simulate 30 years of streamflow data at site B using the 30 years of observed record at site A as the system input.
- (3) Use the 30 years of simulated data in the low-flow frequency analysis.

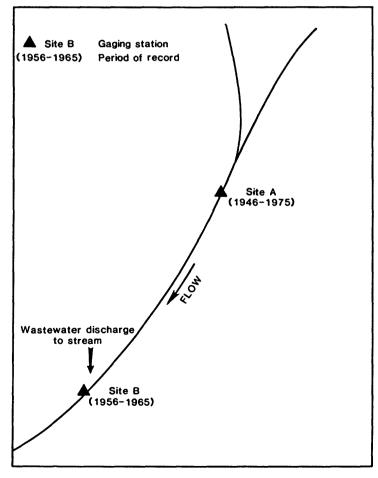


Figure 2.--Stream reach for hypothetical streamflow routing example.

Model verification utilizes the calibrated model parameters and 10 years (1956-65) of observed site A flow to simulate 10 years of site B streamflow. Model parameters are considered verified if these simulated flows agree within predefined error acceptance criteria for the 1956-65 observed data at site B. Adequacy of the agreement can be evaluated on the basis of flow characteristics such as annual and total flow volumes, low-flow frequency relations, and flow-duration relations.

The error acceptance criteria are influenced by the project objectives and time and resources available to fine tune the model. Previous modeling with CONROUT by Maine Water Resources Division personnel demonstrated that the model could reproduce data for 90 percent of the observed population to within 10 percent (Fontaine and others, 1983). The Maine analysis producing these results was an ideal application of CONROUT and results will vary depending upon the complexity of the stream system.

Verified model parameters and 30 years (1946-75) of observed flow at site A provide the necessary data to simulate 30 years of streamflow at site B. Assuming that reasonable error acceptance criteria were used for model calibration and verification, these simulated data are a better representation of long-term hydrologic conditions than are the 10 years of observed data at site B. Therefore, low-flow frequency estimates based on the simulated data provide improved hydrologic input for the planning process.

Example 2

The same stream reach used in example 1 except that in addition to the wastewater discharge near site B there is a proposed reservoir near site A as is illustrated in figure 3. Therefore, the required low-flow frequency estimates must be on regulated flow data rather than the natural flow data that are available.

The following approach to this problem is based upon several assumptions: (1) a mathematical model can be designed to adequately represent the proposed reservoir; (2) natural flow at site A is the inflow to the proposed reservoir; and (3) the reach characteristics and the drainage area between the outflow point of the proposed reservoir and site B are not significantly different from those between site A and site B.

The first two of the above assumptions imply that it is possible to simulate 30 years of reservoir outflow. As per the third assumption, these regulated flows traverse a reach essentially identical with the reach between site A and site B and the intervening flow is likewise unchanged from natural conditions. Therefore, these simulated reservoir outflows can be used as the input to CONROUT which has been calibrated and verified as per the discussion in Example 1. The output represents 30 years of simulated, regulated streamflow at site B. Low-flow frequency estimates based on these data provide the necessary logic input to the planning process.

Given: Identical to previous example except a reservoir is proposed just downstream of site A.

Required: Low-flow estimate for regulated streamflow at site B.

Approach: (1) Calibrate and verify streamflow routing model as in previous example.

- (2) Use a digital model of the reservoir with 30 years of observed flow at A as reservoir inflow to simulate 30 years of reservoir outflows.
- (3) Use 30 years of simulated resevoir outflow as system input to the streamflow routing model to simulate 30 years of regulated flow at site B.
- (4) Use 30 years of simulated, regulated flow at site B in the low-flow analysis.

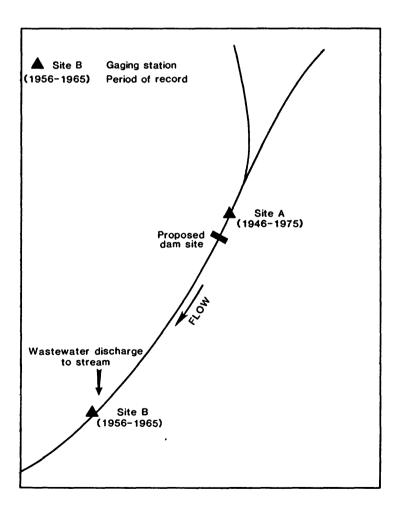


Figure 3.--Hypothetical stream reach with proposed reservoir.

Example 3

A basin in which daily streamflow data have been observed at the six sites indicated by letters A through F is illustrated in figure 4. Drainage areas above the sites are indicated in parentheses. Data have been collected at sites B and F for a much shorter period of time than at the other four sites. Someone wants an estimate of daily flow at site F for the longest possible time period.

The solution to this problem would involve application of CONROUT to two separate stream reaches, site A to site B and sites B and C to site F. Without specific stating of the routing coefficients, the two equations in figure 4 indicate possible relationships resulting from calibration and verification processes.

$$B_{S} = (A_{0})_{r} + 0.27 (A_{0})$$
 (8)

$$F_s = (B_s + C_o)_r + 1.33 (D_o + E_o)$$
 (9)

where subscripts

- o = observed flow at referenced location;
- r = routed flow from referenced location; and
- s = simulated flow at referenced location.

The first equation, for simulated flow at site B ($B_{\rm S}$) has a routed flow component and an intervening flow component. The routed component, ($A_{\rm O}$)_r, is the observed flows at site A routed to site B. The intervening flow component, 0.27($A_{\rm O}$), is the observed flow at site A multiplied by the ratio of ungaged drainage area between sites A and B (2100 mi² - 1650 mi² = 450 mi²) to the drainage area at site A (1650 mi²). This ratio is referred to as the drainage-area ratio. The equation for simulated flow at site F ($F_{\rm S}$) also has a routed component and an intervening flow component. The routed component, ($B_{\rm S} + C_{\rm O}$)_r, is the sum of simulated flow at site B and observed flow at site C routed to site F. The intervening flows are estimated using the sum of observed flows at sites D and E as the index with 0.33 being the ratio of ungaged area (3800 mi² - 2100 mi² - 1100 mi² - 275 mi² - 175 mi² = 150 mi²) to the drainage area of the index stations (175 mi² + 275 mi² = 450 mi²). Of course, the expression 1.33($D_{\rm O}$ + $E_{\rm O}$) is the total sum of the tributary inflows and estimated intervening flow.

Given:

Long-term records at sites A, C, D, and E; short-term records at sites B and F.

Required:

Long-term record at site F.

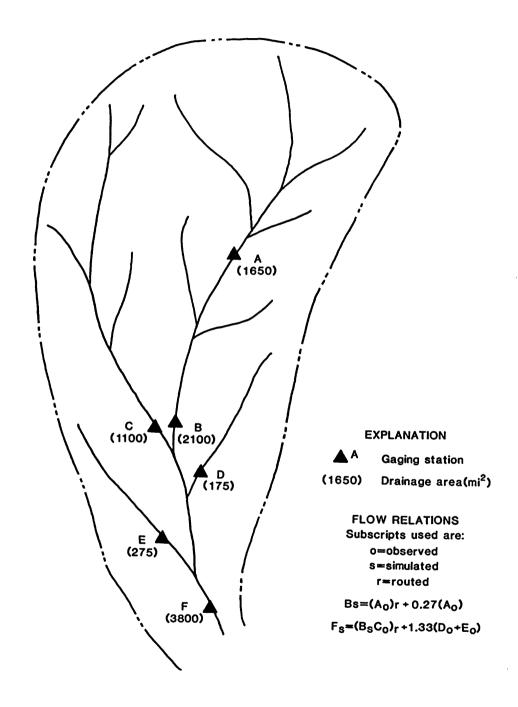


Figure 4.--Hypothetical streamflow routing example for multiple reaches.

Field Examples

Two examples of actual field applications of CONROUT are presented in this section. Although they are fairly simple examples, they do illustrate how the required model input data are prepared. More complicated applications will use these principles as a basic foundation.

Example 1

This example is from the Flambeau River study (Krug, 1976). Briefly, the purpose of the study was to determine the low-flow frequency of the Flambeau River at Park Falls (figure 5). There were no streamflow records at the site. Transfer of low-flow characteristics from other gaging stations was not considered reliable because the stream is highly regulated. Gaging station data available for this study are summarized in table 1.

The basic approach consisted of two simulations with two routing reaches each. The first simulation included routing from Flambeau Flowage to Butternut, then from Butternut to Winter. After these reaches were calibrated and verified, the same model parameters were used for the second simulation, routing from Flambeau Flowage to Park Falls and from Park Falls to Winter. In all cases, a drainage—area ratio (ungaged area/index station area) times the flow of the nearby South Fork Flambeau River near Phillips was used to simulate ungaged inflow.

In order to determine the model parameters C_0 (flood wave celerity) and K_0 (wave dispersion coefficient) for these reaches, it was necessary to determine the width (W_0) and slope (S_0) of the channel and the slope of the stage discharge relation $(\mathrm{d}Q_0/\mathrm{d}y_0)$. The width of the channel was determined from topographic maps and from discharge measurement notes at gaging stations. The slope was determined from topographic maps while $\mathrm{d}Q_0/\mathrm{d}y_0$ was determined from the rating tables for the gaging station.

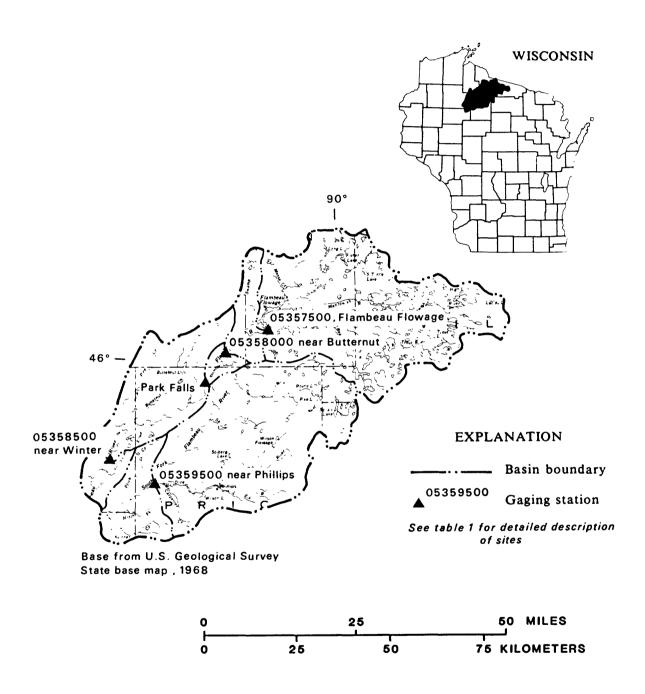


Figure 5.--Map of study basin and its location in Wisconsin.

Table 1.—Drainage areas upstream from sites and availability of surface-water records

Station number	Station name	River miles from Park Falls	Drainage area (mi ²)	Water years of record
)5357500	Flambeau River at Flambeau Flowage.	18.34	666	1928-61
05358000	Flambeau River near Butternut.	8.53	737	1915-38 <u>1</u> /
ap 100 100 100 100 100 100 100	Flambeau River at Park Falls. $\frac{2}{}$	0	769	agan 40% atah atah atah 1000 atah atah atah atah
05358500	Flambeau River at Babbs Island near Winter.	35.12	1,000	1930-75 <u>3</u> /
05359500	South Fork Flambeau River near Phillips.		615	1930-75

^{1/}Unregulated flows for the 1915-26 period.

^{2/}Not a streamflow gaging station.

^{3/}Streamflow data were collected for the entire period; however, all or part of the data for water years 1940, 1952, and 1960 were missing from the computer files and were not available for analysis at the time of this study.

The single linearization method was selected and the discharge used to linearize the routing was the 2-year, 7-day low flow. This low flow was chosen because the primary purpose of the study was to simulate low flow. The following table lists the parameters determined for the study. Two different widths were used at the Butternut gage, appropriate for the reaches upstream and downstream from the gage, respectively.

Site			Slope S _o (ft/ft)	dO _o C _o dy _o (ft ² /s)	$= \frac{1}{W_0} \frac{dQ_0}{dy_0}$ (ft/s)	$K_o = \frac{O_o}{2S_oW_o}$ (ft ² /s)
Flambeau Flowage	110	150	9.074(10)-4	190	1.27	405
Butternut	289	150	100 AND	262	1.74	1,060
	289	200	7.290(10)-4	262	1.31	990
Winter	547	280		543	1 .94	1,340

For the first trial on each reach, the $C_{\rm O}$ and $K_{\rm O}$ from the end points were averaged. Thus the first trial was $C_{\rm O}$ = 1.50 and $K_{\rm O}$ = 730 for the upstream reach and $C_{\rm O}$ = 1.62 and $K_{\rm O}$ = 1,160 for the downstream reach. After several trials, adjusting the parameters to improve the fit of the summer low flow periods, the final parameters were $C_{\rm O}$ = 1.5 and $K_{\rm O}$ = 600 for the upstream reach and $C_{\rm O}$ = 1.5 and $K_{\rm O}$ = 1,000 for the downstream reach.

South Fork Flambeau River streamflow data were used to simulate the intervening inflow for all reaches. Several trials were made to simulate ungaged inflow using a variety of ratios times the flow of the South Fork; none of the trials were significantly better than the drainage-area ratio. As one example of the computation of this ratio, the drainage area at the Phillips station (05359500) is 615 mi². The increase in drainage area from Flambeau Flowage to Butternut is 71 mi² or 12 percent of the Phillips drainage area. Therefore, a ratio of 0.12 times the South Fork flows was used to simulate the intervening flow.

The program control data cards for the routing on this reach are as follows: (An explanation of data entries is presented in a later section of this report)

10 | 1929 | 1200 | 9 | 30 | 1961 | 1200 | I=21, 0=26, ROUTE, DIFFA | 05358000 | BUTTERNUT ROUTED FROM FLOWAGE | C=1.5, K=600, K=9.81, REACH=FLOWAGE-BUTTERNUT | I=22, 0=26, RATIO=0.12, ADD | 05358000 | SIMUATED FLOW AT BUTTERNUT

This states that file 21 (second card, I=21) contains the observed flow for the Flambeau River at Flambeau Flowage, that file 22 (fifth card, I=22) contains the observed flow data for the South Fork Flambeau River near Phillips, and that file 26 (fifth card, ϕ =26) is to receive the simulated flow for the Flambeau River near Butternut. In summary the above cards do the following:

Card 1-The period of analysis is defined.

Card 2-Inflow on file 21 is routed by the diffusion analogy method and output on file 26.

Card 3--Title description card.

Card 4--Model parameters defined for reach.

Card 5--Intervening flow computed.

Card 6--Title description card.

Example 2

This example is from a study performed on the Wisconsin River (Krug and House, 1980). The purpose of the Wisconsin River study was to simulate an equal period of record at all gaging stations on the Wisconsin River including simulation of the present reservoir system. These equal periods of record were needed to compute a consistent set of flood frequency estimates for the Wisconsin River.

Daily streamflow data had been collected at 11 sites on the Wisconsin River for various periods of time. During the period of record at most of the longer term stations, several large reservoirs had been added to the system making the long-term records unreliable for estimating flood frequency. The shorter term stations would give flood frequencies that were inconsistant, depending on whether their period of record included a representative sample of floods.

This example is a segment of a larger model of the Wisconsin River. In this segment, streamflow records are available for the Wisconsin River at Merrill for water years 1915-1976 and for the Wisconsin River at Rothschild for water years 1945-1976 (figure 6). In order to simulate the effects of upstream reservoirs on flood peaks, a flow routing model is required for this reach to simulate flow from Merrill to Rothschild plus the ungaged inflow between them.

Two main tributaries enter the Wisconsin River just upstream from Rothschild; the Rib River and the Eau Claire River. Streamflow records were available on these streams for substantial parts of the period for which flow simulation was required at Rothschild. The Eau Claire River gage had record for water years 1915-1926 and 1940-1976. The Rib River gage had record for water years 1925-1957. Using correlation techniques, it was possible to extend the record for the Rib River gage to 1915-1976, based on streamflow records from an adjacent basin. Because the Eau Claire River basin was not similar to other gaged basins, no satisfactory correlation could be found to extend this record.

With data from Merrill, the Rib River, and the Eau Claire River, it should be possible to extend the record at Rothschild, at least for the period 1915-1926 and 1940-1944.

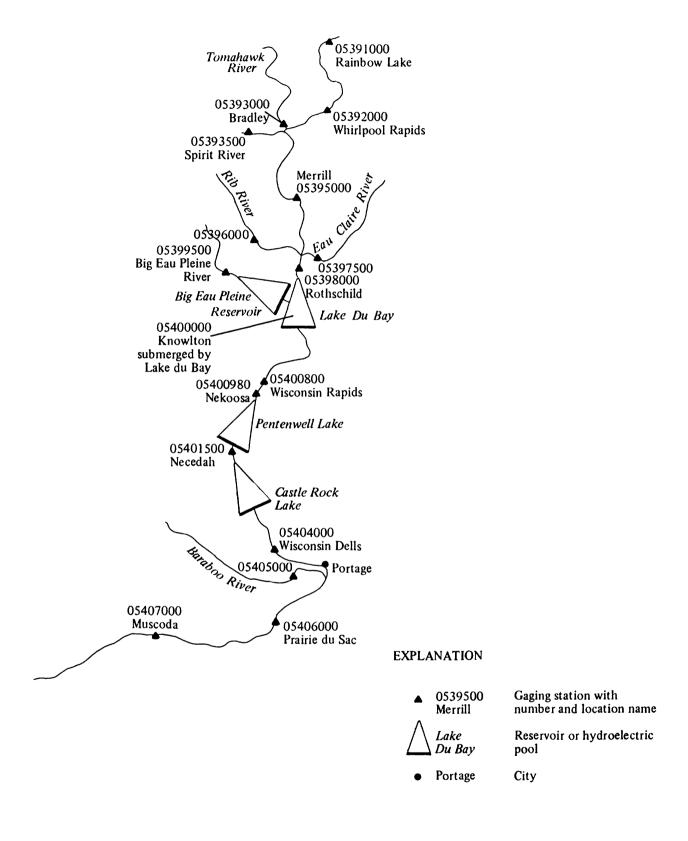


Figure 6.--Schematic diagram of the Wisconsin River.

The basic data required for computing the unit-response function include the length of the reach, width of the channel, slope of the channel, and the slope of the stage discharge relation. The length of the reach (27.4 miles) was readily determined from published reports of river miles along the Wisconsin River. The slope of the channel at normal (long-term mean flow) conditions was computed from the length of the reach and the difference between the elevations of the mean discharge at the gaging stations which was readily determined from the gaging station records. It was determined to initially evaluate the unit response coefficients at three different flow rates: the 7-day, 10-year low flow, the long-term mean flow and the 10-year high flow. These three flow rates for each station were taken from published reports. The corresponding slopes of the rating curves (d00/dy0) were determined from the rating tables for the gaging station. The channel width at normal flow was measured at intervals on topographic maps. The mean width was 380 feet. widths to use for the higher and lower discharge were determined from a sampling of representative cross sections and gaging stations where channel widths could be determined at various discharges. The computation of model parameters C_0 and K_0 for the three flow conditions is summarized in table 2 for each gaging station.

For each of the three flow conditions the C_O and K_O computed for the two sites were averaged. This gave three sets of K_O and C_O to be used in the initial calibration. These three sets of parameters together with an estimate of intervening inflow were used to simulate flow at Rothschild for several selected periods. On this initial trial the parameters corresponding to mean flow gave the best simulation. Small adjustments in K_O and C_O did not improve the simulation significantly, so the mean flow parameters were accepted as the final values.

Simultaneous with the calibration of K_0 and C_0 , the intervening inflow simulation was being calibrated. The increase in drainage area between Merrill and Rothschild is 1,260 mi². Of this, 303 mi² is upstream of the Rib River gaging station and 375 mi² is upstream of the Eau Claire River gaging station. The remaining 582 mi² is ungaged. This is 86 percent of the combined area of the two tributary gaging stations. The simplest simulation of the intervening area would be to multiply the combined flows from both tributaries by 1.86 and add the result to the flows routed from Merrill to Rothschild. This was the first trial used for estimating intervening area ungaged flow during model simulation.

Table 2.--Model parameters for Wisconsin River study

Site	Type of flow	Discharge Q _o (ft ³ /s)	Average Width Wo (ft)	Slope S _o (ft/ft)	$\frac{\frac{dQ_{0}}{dy_{0}}}{(ft^{2}/s)}$	$C_{o} = \frac{1}{W_{o}} \frac{dQ_{o}}{dy_{o}}$ (ft/s)	$K_{o} = \frac{Q_{o}}{2S_{o}W_{o}}$ (ft^{2}/s)
Merrill <u>l</u> /	Q _{mean}	2,685	380	6.53(10)-4	1,600	4.210	5,410
${\tt Merrill} \underline{1}/$	Q _{7,10}	880	322	$6.53(10)^{-4}$	900	2.795	2,093
Merrill $\frac{1}{2}$	Q ₁₀	23,900	567	6.53(10)-4	4,000	7.055	32,275
Rothschild $\frac{2}{2}$	Q _{mean}	3,438	416	4.20(10)-4	1,500	3.606	9,839
Rothschild $\frac{2}{}$	Q _{7,10}	950	352	4.20(10)-4	900	2.557	3,213
Rothschild ² /	010	49,200	620	4.20(10)-4	5000	8.064	94,470

^{1/}Drainage area at Merrill = 2,758.35 mi²

Slope (S_0) and Average width (W_0) are an average of reach between Merrill and Rothschild, a distance of 27.4 mi.

²/Drainage area at Rothschild = 4,020.59 mi²

Slope (S_0) and Average width (W_0) are an average of reach between Rothschild and next site (Knowlton) downstream, a distance of 18.0 mi.

A second trial for the ungaged simulation was indicated by the fact that the physical characteristics of the intervening area west of the Wisconsin River are different from the area east of the river. The intervening area west of the river is 524 mi² and the area east of the river is 736 mi². For this trial, the Rib River streamflow was used to simulate all the intervening area west of the river and the Eau Claire streamflow was used to simulate the intervening area east of the River. Based on the respective drainage areas, the Rib River flows were multiplied by 1.73 and the Eau Claire River flows were multiplied by 1.73 and the Eau Claire simulation of Rothchild flows than the first trial. Other combinations of ratios were used to try to improve the simulation of intervening inflow, but none of the other ratios gave better results than the second trial.

The program control cards necessary for the best simulation of flows on this reach are as follows:

10 | 1915 | 200 9 30 | 926 | 200 | 1=21, 0=26, ROUTE, DIFFA | 05398000 ROTHSCHILD FLOW FROM MERRILL | C=3.9, K=7600, X=27.4, REACH=MERRILL-ROTHSCHILD | I=22, 0=26, RATIO=1.73, ADD | 05398000 MERRILL & RIB FLOW ADDED IN | I=23, 0=26, RATIO=1.96, ADD | 05398000 SIMULATED FLOW AT ROTHSCHILD

It is assumed that file 21 (second card, I=21) contains the recorded flow data from Merrill, that file 22 (fifth card, I=22) contains the recorded flow data for the Rib River, that file 23 (seventh card, I=23) contains the recorded flow data for the Eau Claire River, and that file 26 (seventh card, \$\oplus\$=26) is to receive the simulated flow at Rothschild. In summary the above cards do the following:

Card 1--The period of analysis is defined.

Card 2-Inflows on file 21 routed by the diffusion analogy method and output on file 26.

Card 3--Title description card.

Card 4--Model parameters defined for reach.

Card 5--Intervening flow computed and added to Rothschild flow.

Card 6--Title description card.

Card 7--Intervening flow computed and added to Rothschild flow.

Card 8-Title description card.

SYSTEM ORGANIZATION AND INPUT DATA REQUIREMENTS

CONROUT was developed on an IBM 360/91½ and is compiled in a load module under level G Fortran. Input for CONROUT is punched cards and direct access disk files. Core storage required for execution depends upon the number of disk files being used (each file requires slightly more than 3,000 bytes of core). Therefore, the user should specify a REGION size between 160K (when using one file) and 190K (for 10 files). A sample program run as illustrated in Appendix D took 1.42 seconds of execution time. Running under a priority of class B the job cost \$2.22 to execute on the U.S. Geological Survey's Amdahl computer.

Several computer programs are used in conjunction with CONROUT. Their relationships to CONROUT are illustrated in figure 7. The streamflow data used in CONROUT are retrieved from the U.S. Geological Survey's WATSTORE system and are transformed and edited for input to the model. After CONROUT has been used to simulate streamflow data, streamflow statistics programs can be used to analyze both the simulated and observed data.

These programs and their operation are described in detail in Appendix D. The remaining sections of this report describe the different operations that CONROUT can perform and the model input data requirements.

^{1/}The use of brand names in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

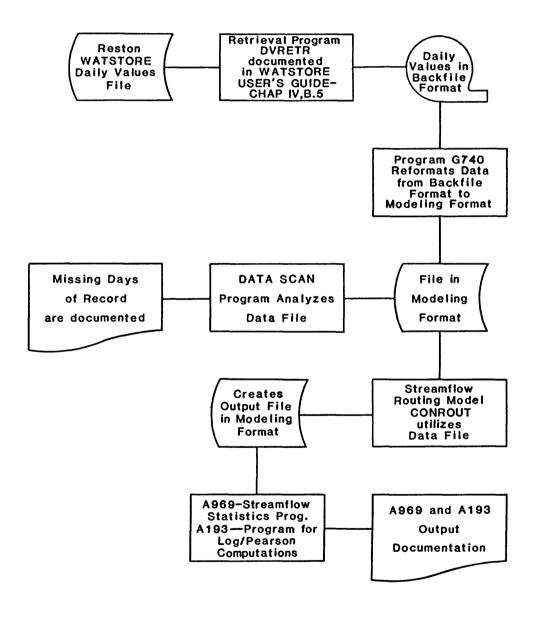


Figure 7.—System Organization of CONROUT.

CONROUT can do five functions which are as follows:

- 1. Streamflow computations;
- 2. Data comparison;
- Data plotting;
- 4. Data printout; and
- 5. Restart.

Six different kinds of input data cards are required to perform the above functions. These are:

- 1. Time data;
- 2. Instructions;
- Header information;
- 4. Title information;
- 5. Routing parameters; and
- 6. Discharge/wave-dispersion/wave-celerity data.

The functions and required data cards are documented in table 3.

A job may consist of a single step using one of the first four functions, or it may involve several steps using various combinations of the above functions. If all steps of the job involve the same time period, then a single Time Data Card (preceding the instruction card for the first step of the job) will suffice for the entire job. However, between any two steps in the job which require different time periods, a Restart Instruction Card followed by a Time Data Card must be input to redefine the time period.

Table 3.--Program functions and data card requirements

Progr	am function	Data card(s) required
I.	Streamflow computations	A. Time Data card $\underline{\mathbb{L}}'$
		B. Instruction card
		C. Header Information card
		D. Routing Parameter card (required only when ROUTE instruction specified on B above)
		E. Discharge/wave-dispersion/wave-celerity cards (required only when MULT instruction is specified on B above)
ıı.	Data comparison	A. Time Data card!/
11.	-	
III.	Data plotting	B. Instruction card
IV.	Data printout	C. Title Information card
٧.	Restart	A. Instruction card

 $\underline{1}/\mathrm{If}$ first step of a job or the first step having a time period different from the previously defined time period.

Time Data Card

The Time Data Card specifies the period of record for model execution. The data are coded as follows:

Input item	Variable name	Format	Card columns
Starting month	INITMØ	I 5	1-5
Starting day	INITDY	15	6-10
Starting year <u>l</u> /	INITYR	15	11-15
Initial time2/	INITI	15	16-20
Ending month	LASTMÓ	15	21-25
Ending day	LASTDY	15	26-30
Ending year <u>l</u> /	LASTYR	15	31-35
Ending time2/	LASTI	15	36-40
Number of data records plus 1 for the header record	NRECDS	15	41-45
Routing interval daily data = 24. hourly data = 1.	RI	F5 .0	46-50
Print control option NTSØ = 0, CONROUT Daily = 1, CONROUT Summar	-	I5 nmary	51-55
= 2, Same as NTSØ = 3, Same as NTSØ =	0 except with		

^{1/}Four-digit year such as 1962, 1963, etc.

^{2/}For daily routing, may leave blank or input time in military notation.

 $[\]frac{3}{\text{Files 17}}$, 18, and 19 have to be defined in JCL to output information. File 17 contains simulated discharge (Q₁) data.

File 18 contains observed discharge (Q2) data.

File 19 contains computed differences between simulated and observed discharges in percent and computed as $[(Q_1-Q_2)*100/Q_2]$. Data in each file are stored in 80-byte records in a format of (8F9.2,8x). A complete water year requires 46 records with day 365 the fifth item in the 46th record. If a leap year then day 366 will be be stored in the sixth item.

Streamflow Computations

Table 4 documents information needed for the Instruction Card for the streamflow computation functions. The various instructions are not order-dependent, that is, the program does not expect the options in any specific order. The following types of streamflow computations are possible.

- a. Copy hydrographs;
- b. Combine hydrographs;
- c. Change timing of hydrographs by lagging one or more routing intervals;
- d. Multiply hydrographs by ratios;
- e. Route hydrographs to downstream locations; and
- f. Combinations of the above.

Table 4.—Instructions for streamflow computations

INPUT FILE = $xx\frac{1}{2}/\frac{3}{4}$	Specifies the file number of the input hydrograph data.
OUTPUT FILE = $yy1/3/4/$	Specifies the file number of the output hydrograph data.
RATIO = w.d5/	Multiplies the input hydrograph by the ratio, $\mathbf{w}_{\bullet}\mathbf{d}$.
$LAG = \ell \frac{5}{6}$	Lags the input hydrograph by ℓ routing intervals.
RØUTE <u>5/6</u> /	Convolutes input hydrograph with the unit- response function(s). If the DIFFA instruc- tion (below) is not specified, a single unit- response function is computed using the storage-continuity method.
DIFFA3/7/	A single unit-response function is computed using the diffusion analogy method.
MULT <u>3/8</u> /	A family of unit-response functions is computed using the diffusion analogy method and multiple linearization.
ADD <u>5</u> /	The final output hydrograph is the sum of the initial output hydrograph and the input hydrograph (with any modifications caused by other instructions).

^{1/}Mandatory instruction

3/Only first letter of instruction word used in the translation

$$4/26 \le yy \le 30$$

5/Whole instruction word used in the translation

6/LAG and ROUTE cannot be used simultaneously

7/Can be used only in conjunction with ROUTE

8/Can be used only in conjunction with ROUTE and DIFFA

 $^{2/21 \}le xx \le 30$ (suggest $21 \le xx \le 25$)

Instruction Card Format

The format of the Instruction Card for the streamflow computations function is shown in table 5.

Table 5.--Instruction Card format for streamflow computations function

Input item	Card entry	Format	Card columns
Input file	$I = xx\frac{1}{2},$	Free field2/	1-80
Output file	$\emptyset = xx\underline{1}/,$	Free field	1-80
Кеу	word Parameter Ins	structions	
Diffusion analogy	DIFFA,	Free field	1-80
Route	RÓUTE,	Free field	1-80
Use multiple linearization	MULT,	Free field	1-80
Add two hydrographs	ADD,	Free field	1-80
Multiply by a ratio	RATIO= $\mathbf{w} \cdot \mathbf{d} \frac{3}{2}$,	Free field	1-80
Lag a hydrograph	LAG= $\ell \frac{4}{}$,	Free field	1-80

^{1/}xx represents a two-digit file number.

^{2/}Free field entries allow input anywhere on card in column 1-80.

Differentiation between individual field entries is signified by a separation comma (,) except for the last entry.

^{3/}w.d represents a number in the range - 99999.99999 $\le w.d \le 99999.99999$ with at least one digit required on each side of the decimal point.

^{4/}An integer representing the number of routing intervals by which the input hydrograph is to be lagged.

Various combinations of instructions for streamflow computations are possible. Table 6 lists four of the simplest combinations and the final result of the operation. It can be noted from table 6 that blank spaces are allowed between and within individual instructions entries.

Table 6.—An example of four streamflow computation instruction combinations

Combination	Result
I = xx, Ø = yy	The discharge hydrograph is input from file xx and then copied to output file yy.
$I = xx$, ADD, $\emptyset = yy$	Two discharge hydrographs from files xx and yy are input, added together, and the resultant hydrograph output to file yy.
I = xx, $RATIØ = w.d$, $Ø = yy$	The discharge hydrograph is input from file xx, multiplied by the ratio w.d, and the resultant hydrograph output to file yy.
I = xx, RATIØ = w.d, ADD, Ø=yy	The discharge hydrograph is input from file xx and multiplied by the RATIO w.d, then a second hydrograph from file yy is input and added to the multiplied hydrograph. This summed hydrograph is then output to file yy.

Each of the instruction combinations illustrated in table 6 may be combined with lagging or routing (not both) operations. Table 7 illustrates the additional instructions that may be used for the lagging and routing operations. Each of the four entries in table 7 may be combined with the combinations in table 6 providing 16 total possible instruction combinations for streamflow computations.

Table 7.—Lagging and routing operations for streamflow computations function

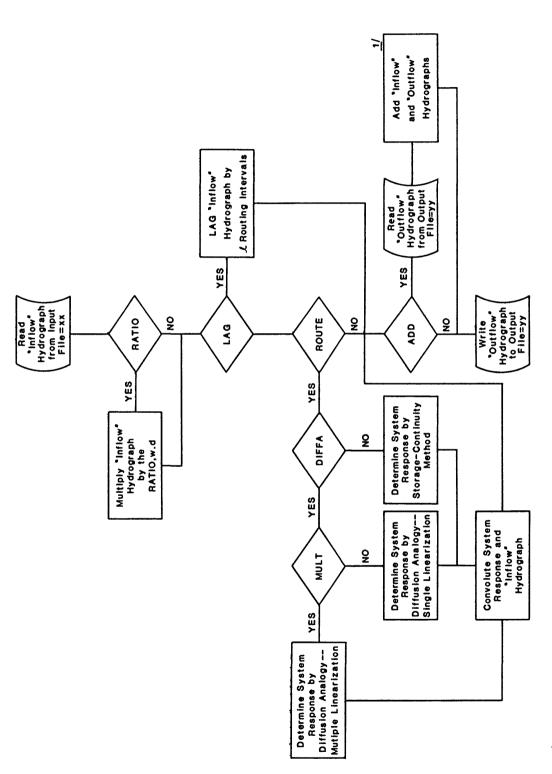

Instruction(s)	Purpose
LAG = l	Lags input hydrograph by £ routing intervals.
RØUTE	Performs routing computations using storage-continuity method to determine system response.
RÓUTE, DIFFA	Performs routing computations using diffusion analogy method with single linearization to determine system response.
RÓUTE, DIFFA, MULT	Performs routing computations using diffusion analogy method with multiple linearization to determine system response.

Figure 8 illustrates the computational sequences for any instruction combination. As shown in the figure the hierarchy of the instructions for streamflow computations is:

- 1. Multiplying by a ratio;
- 2. Routing or lagging hydrographs; and
- 3. Adding hydrographs.

As mentioned above, individual instructions are not order-dependent, thus:

- 1. I = xx, \emptyset = yy, R \emptyset UTE, RATI \emptyset = w.d, MULT, ADD, DIFFA
- 2. RÓUTE, ADD, I = xx, RATIÓ = w.d., DIFFA, MULT, ϕ = yy, and
- 3. DIFFA, MULT, RATIO = w.d, ϕ = yy, ADD, ROUTE, I = xx are all equivalent instruction cards.

1/ "inflow" Hydrograph at this point may have been modified by previous operations.

Figure 8.--Flow chart of operations for streamflow computations.

Header Card Format

The format of the header card for streamflow computations is documented in table 8.

Table 8.--Header card format for streamflow computations

Input item	Variable name	Format	Card columns
Station number identification	stanøi <u>1</u> /	2A4	1-8
Station name	STANM1 <u>2</u> /	1 2A4	11-58

^{1/}STANØ1 is an array with 2 elements.

Parameter Card Format

The parameter card is required only when the ROUTE instruction has been selected. Tables 9, 10, and 11 document the formats for the three methods of routing.

^{2/}STANM1 is an array with 12 elements.

Storage-Continuity Method

If the storage-continuity method is requested (R ϕ UTE specified on the Instruction card without DIFFA and MULT) then the parameter card is input as described in table 9.

Table 9.--Parameter card format: storage-continuity method

Input item	Card entry	Format	Card columns
Slope of storage-discharge relation 1/	K= ,	Free field	1-80
Time base of translation hydrograph $\underline{1}'$	W= ,	Free field	1-80
Linearity coefficient in storage-discharge relation 1/	X= ,	Free field	1-80
Traveltime of leading edge of flood wave $\frac{1}{2}$ /	TT= ,	· Free field	1-80
Reach identification $2/$	REACH=	Free field	1-80

^{1/}Described in detail in Sauer (1973).

^{2/}Identification information (entered after the = sign) is limited to 20 columns and can include any alphanumeric characters.

Diffusion Analogy Method: Single Linearization

If the diffusion analogy method with single linearization is requested, (ROUTE and DIFFA without MULT on the Instruction Card) then the parameter card format is shown in table 10.

Table 10.--Parameter card format: diffusion analogy method, single linearization

Input item	Card entry	Format	Card columns
Celerity 1/ Dispersion 2/ Reach length 3/	C= , K= , X= ,	Free field Free field Free field	1-80 1-80 1-80
Reach identification $\frac{4}{}$	REACH=	Free field	1-80

^{1/}As computed from equation 5.

^{2/}As computed from equation 4.

^{3/}Value entered in units of miles.

^{4/}Limited to 20 columns.

Diffusion Analogy Method: Multiple Linearization

If the diffusion analogy method with multiple linearization is requested, (ROUTE, DIFFA, and MULT on the Instruction Card) then the parameter card format is shown in table 11.

Table 11.—Parameter card format: diffusion analogy method, multiple linearization

Input item	Card entry	Format	Card columns
Reach length $1/$	X= ,	Free field	1-80
Reach identification $2/$	REACH=	Free field	1-80

l/Value entered in units of miles.

^{2/}Limited to 20 columns.

For the diffusion analogy method with multiple linearization, the discharge/wave-dispersion/wave-celerity data are input on additional cards (table 12). There must be at least two discharge/wave-dispersion/wave-celerity data entries and the maximum limit is 10 entries.

Table 12. -- Formats of discharge/wave-dispersion/wave-celerity data cards

Input item	Variable name	Format	Card columns
Discharge range card			
Minimum discharge should be set to the lowest flow that you are interested in.	OMIN	F8.0	1-8
Maximum discharge must be less than the largest entry in the discharge table	QMAX	F8 .0	9-16
Discharge/wave-dispersion tab	ole cards	,	
Discharges, from lowest to highest flows expected in ascending order (Can be 2 to 10 values)	врw	10F8.0	1-80
Wave-dispersion values matche up with discharge values 1/	ed WBP	10F8.0	1-80
Discharge/wave-celerity table	cards		
Discharges, from lowest to highest flows expected in ascending order (Can be 2 to 10 values)	ВРС	10F8.0	1-80
Wave-celerity values matched with discharge values 2/	ир СВР	10F8.0	1-80

^{1/}Wave-dispersion values have to be entered in either increasing
 or decreasing order.

^{2/}Wave-celerity values have to be entered in increasing order only.

Data Comparison

The data comparison function has both an Instruction Card and a Title Card.

Instruction Card Format

The Instruction Card format for the data comparison function is documented in table 13.

Table 13.--Instruction card format for the data comparison function

Input item	Card entry	Format	Card columns
Compare instruction	COMPARE, 1/	Free field	1-80
First input file number	FIRST FILE= $xx, \frac{2}{3}$	Free field	1-80
Second input file number	SECOND FILE=yy, 3/4/	Free field	1-80

^{1/}The COMPARE function computes a percent error between discharges Q_1 and Q_2 from the formula $[(Q_1-Q_2)*100/Q_2]$. Q_1 and Q_2 are obtained from the FIRST FILE and SECOND FILE, respectively.

 $3/21 \le xx \le 30$.

4/May be abbreviated to S=yy.

Title Card Format

The format of the Title Card for the data comparison function is 80Al which permits coding useful identification information anywhere in columns 1--80.

^{2/}May be abbreviated to F=xx.

Data Plotting

The data plotting function also has both an Instruction Card and a Title Card.

Instruction Card Format

The Instruction Card format for the data plotting function is documented in table 14.

Table 14.—Instruction card format for the data plotting function

Input item	Card entry	Format	Card columns
Plot instruction	PLØΤ,	Free field	1-80
First input file number	FIRST FILE= $xx, \frac{1}{2}$	Free field	1-80
Second input file number	SECOND FILE= yy , $\frac{2}{3}$ / $\frac{4}{4}$ /	Free field	1-80
Minimum discharge	$QMIN = q, \frac{5}{6}$	Free field	1-80

1/May be abbreviated F=xx.

2/21 < xx < 30.

3/A second input file is optional.

4/May be abbreviated S=yy.

5/Optional with default of q = 1

6/q must be an integer. The plot consists of four 3-inch log cycles on the discharge scale. Thus if q is specified as 10^a , flows less than q and greater than 10^{a+3} will not be plotted.

Title Card Format

The format of the Title Card for the data plotting function is 80Al which permits coding useful identification information anywhere in columns 1-80.

Data Printout

The data printout function has both an Instruction Card and a Title Card.

Instruction Card Format

The Instruction Card format for the data printout function is documented in table 15.

Table 15.--Instruction card format for the data printout function

Input item	Card entry	Format	Card columns
Print instruction	PRINT,	Free field	1-80
First input file number	FIRST FILE= $xx, 1/2/$	Free field	1-80
Second input file number	SECOND FILE=yy, 2/3/4/	Free field	1-80

^{1/}May be abbreviated F=xx.

 $2/21 \le xx \le 30$.

3/A second input file is optional.

4/May be abbreviated S=yy.

Title Card Format

The format of the Title Card for the data printout function is 80Al which permits coding useful identification information anywhere in columns 1--80.

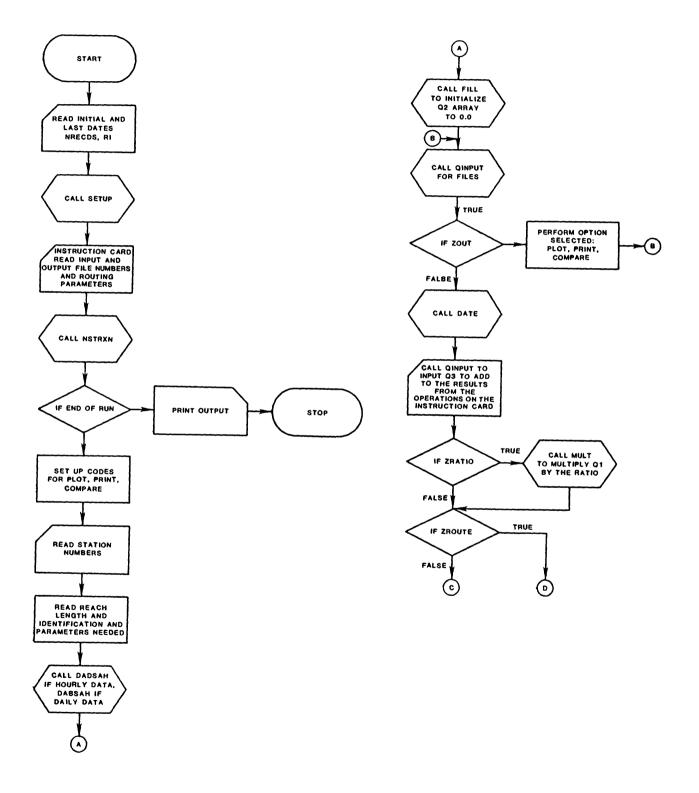
Restart

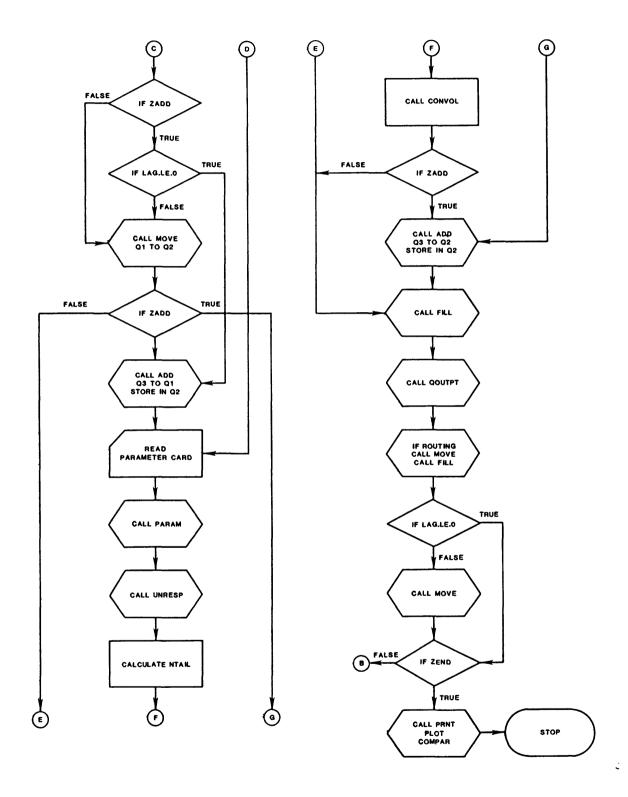
The Restart function requires only an Instruction Card.

Instruction Card Format

The Instruction Card format for the Restart function is documented in table 16.

Table 16.--Instruction card format for restart function


Input item	Card entry	Format	Card columns
Restart instruction (necessary only when next step requires a new time period).	RESTART	Free field	1-80


SELECTED REFERENCES

- Armbruster, J. T., 1977, Flow routing in the Susquehanna River basin, Part I, Effects of Raystown Lake on the low-flow frequency characteristics of the Juniata and lower Susquehanna Rivers, Pennsylvania: U.S. Geological Survey Water-Resources Investigations 77-12, 35 p.
- Chow, Ven Te, 1959, Open-channel hydraulics: New York, McGraw-Hill Book Co., Inc., 680 p.
- Fontaine, R. A., Moss, M. E., Smath, J. A., and Thomas, W. O., Jr., 1983, Cost-effectiveness of the stream-gaging program in Maine: U.S. Geological Survey Open-File Report 83-261, 81 p.
- Harley, B. M., 1967, Linear routing in uniform open channels: Cork, Ireland University College, thesis presented in partial fulfillment of requirements for the degree of Master of Engineering Science.
- Henderson, F. M., 1966, Open channel flow: New York, MacMillan Publishing Co., p. 364.
- Keefer, T. N., 1974, Desktop computer flow routing: American Society of Civil Engineers Proceedings, Journal of the Hydraulics Division, v. 100, no. HY7, p. 1047-1058.
- 1976, Comparison of Linear systems and finite difference flow routing techniques, Water Resources Research, v. 12, no. 5, p. 997-1006.
- Keefer, T. N., and McQuivey, R. S., 1974, Multiple linearization flow routing model: American Society of Civil Engineers Proceedings, Journal of the Hydraulics Division, v. 100, no. HY7, p. 1031-1046.
- Krug, W. R., 1976, Simulation of streamflow of Flambeau River at Park Falls, Wisconsin to define low-flow characteristics: U.S. Geological Survey Water-Resources Investigations 76-116, 14p.
- Krug, W. R., and House, L. B., 1980, Streamflow model of Wisconsin River for estimating flood frequency and volume: U.S. Geological Survey Water-Resources Investigations Open-File Report 80-1103, 44 p.
- Mitchell, W. D., 1962, Effect of reservoir storage on peak flow: U.S. Geological Survey Water-Supply Paper 1580-C, p. C1-C25.
- Saint-Venant, B. de., 1871, Theory of unsteady water flow, with application to river floods and to propagation of tides in river channels: Comptes Rendus, V. 73, Academie des Sciences, Paris, p. 148-154, 237-240. (Translated into English by U.S. Corps of Engineers, No. 49-g, Waterways Experiment Station, Vicksburg, Miss. 1949).
- Sauer, V. B., 1973, Unit-response method of open-channel flow routing: American Society of Civil Engineers Proceedings, Journal of the Hydraulics Division, v. 99, no. HYI, p. 179-193.
- Schwarz, R. J., and Friedland, B., 1965, Linear systems: New York, McGraw-Hill Book Co., Inc., p. 21.
- Shearman, J. O., and Swisshelm, R. V., Jr., 1973, Derivation of homogenous streamflow records in the upper Kentucky River Basin, southeastern Kentucky: U.S. Geological Survey Open-File Report, 34 p.

APPENDICES

APPENDIX A. GENERALIZED PROGRAM FLOW CHART

APPENDIX B. DESCRIPTION OF CONROUT SUBROUTINES

SUBROUTINE DESCRIPTION

COMPAR

Computes and prints deviations of two hydrographs for individual data points and summarizes mean deviations and volume error.

DABSAH

Used for daily data. Sets the record pointer to the first record for data you are interested in.

DADSAH

Used for hourly data. Sets the record pointer to the first record of data you are interested in.

DATE

Fills up arrays with the day, month, year, and time for printout of the hydrograph.

GETINT

Translates a string of digits from either instruction or parameter cards to integer or real numbers.

HYDROG

Routes the triangular translation hydrograph through channel storage for computing the unit response using the storage-continuity method.

INFLOW

Computes the triangular translation hydrograph for computing the unit response using the storage-continuity method.

JNWYDY

Computes a julian day number on a water year basis (October 1 = 1 and September 30 = 365 or 366, depending on whether or not it is a a leap year).

NSTRXN

Translates the instruction coded on the instruction cards and the parameters coded on the parameter cards.

PLOTIT

Sets up the data for subsequent plotting by PRPLOT.

PRNT

Provides a printout of one or two hydrographs.

PRPLOT

Reads and writes data records on direct access device.

SETUP

Creates space on direct access files.

TABL

This is a linear interpolation routine called when using multiple linearization. Used to compute discharge celerity and dispersion values.

TRANSL8

Checks for proper instructions on the instruction card.

UNRESP

This subroutine calculates unit-response functions for either the storage-continuity method or diffusion analogy method. For the diffusion analogy method, unit-response functions may be calculated for either single linearization (one unit-response function) or multiple linearization (family of unit-response functions).

UTILIT

This subroutine, with various entry points, provides the user with the following capabilities: 1) fill an array with a constant; 2) multiply an array by a constant; 3) move one array to another array, with offsets; 4) add two arrays; and 5) convolute two arrays and accumulate the result in a third array.

APPENDIX C. PROGRAM LISTING

```
00000010
C
                                                                            00000050
C
                                                                            00000030
C
C
                          UNIT RESPONSE ROUTING PROGRAM
                                                                            00000040
С
                                                                            00000050
C
                          PROGRAMMED BY
                                                                            00000060
                          J. O. SHEARMAN AND G. J. STILTNER
                                                                            00000070
C
С
                          DECEMBER 1976
                                                                            00000080
C
      REVISED 27 JUNE 1978 FOR PROGRAM J351 BY J05
                                                                            00000090
      COMPARE SUBROUTINE MODIFIED IN 1983 BY W.H.DOYLE, JR.
                                                                            00000100
C
               TO PRINTOUT AN ERROR DISTRIBUTION TABLE.
                                                                            00000110
C
                                                                            00000120
Ċ
                                                                            00000130
C
                                                                           00000140
                                                                            00000150
C
C
      THIS VERSION MODIFIED FOR DIRECT ACCESS
                                                                            00000150
                                                                            00000170
C
                                                                            00000130
C
                         MIAP
                                PROGRAM
C
                                                                            00000190
      1 OCT 76
                                                                            00000200
С
                                                                            00000210
                                                                            00000220
      IMPLICIT LOGICAL(Z), INTEGER(A)
      INTEGER STAND1(2).STAND2(2).STANM1(12).STANM2(12)
                                                                            00000230
      INTEGER IPFILE OPFILE
                                                                            00000240
      INTEGER REACH(20)
                                                                            00000250
                                                                            00000260
      REAL K.ZERO/0.0/, NOVAL/999999./
      OS)TTI . (05)OFM NOISMENT
                                                                            00000270
      DIMENSION 21(384), IAV(10), LREC(10), Q3(384), Q2(484), NRESP(20) 00000280
      COMMON /INSTCD/ ICARD(80).ICOL
                                                                            00000290
      COMMON /ZLOGIC/ ZOPER(20).ZDONE.ZBORT
                                                                            00000300
      COMMON /DISCHG/ Q1.Q2
                                                                            00000310
      COMMON /IQVALU/ IQF.IQL
                                                                            00000320
      COMMON /FILES/ ID21,ID22,ID23,ID24,ID25,ID26,ID27,ID28,ID29,ID30
                                                                            00000330
      COMMON /RTPARM/ REACH, K, X, TT, W, CZERO, NURS, RI, UR(20, 100), NRO, HWAY(20000340
                                                                            00000350
     10)
      COMMON /PLT/ INFO, INITMO, INITDY, INITYR, LASTMO, LASTDY, LASTYR, STANO10000360
                                                                            00000370
     SMYATZ+SCHATZ+IMYATZ+1
      COMMON /UNITS/ LCARD, LPRNT
      EQJIVALENCE (ZADD.ZOPER(3)), (ZRATIO.ZOPER(1)), (ZROUTE.ZOPER(2)),00000390
     i (ZPLOT,ZOPER(4)), (ZPRINT,ZOPER(5)), (ZDIFFA,ZOPER(6)), (ZFILE2,Z00000400
     20PER(7)), (ZCOMPR, ZOPER(9)), (ZRSTRT, ZOPER(10)), (ZMULT, ZOPER(15))00000410
C
      LCARD=5
                                                                            00000430
      _PRNT=6
                                                                            00000440
      7SET=.FALSE.
                                                                            00000450
                                                                            00000460
      ZBORT=.FALSE.
      WRITE (LPRNT, 460)
      READ PROBLEM CONSTANTS
                                                                            00000480
   10 READ (LCARO.470.END=430) INITMO.INITDY.INITYR.INITI.LASTMO.LASTDY.00000490
     1LASTYR+LASTI+NRECDS+RI+NTSO
                                                                            00000500
      #RITE (LPRNT,480) INITMO,INITDY,INITYR,INITI,LASTMO,LASTDY,LASTYR,00000510
     ILASTI
      VSTEP=0
                                                                            00000530
      IF (ZSET) GO TO 20
                                                                            00000540
                                                                            00000550
C
      SET AND DEFINE FILES
      TF (NRECDS.LE.0) NRECDS=20
                                                                            00000560
                                                                            00000570
C
```

```
CALL SETUP (NRECDS)
                                                                         00000580
                                                                         00000590
    ZSET = . TRUE .
                                                                         00000600
20 CONTINUE
                                                                         00000610
                                                                         00000620
    IF (RI.EQ.24.) GO TO 30
                                                                         00000630
                                                                         00000640
    IDAY=INITDY
    IF (INITDY.GT.15) IDAY=INTTDY-15
                                                                         00000650
                                                                         00000660
    IU3EG=(IDAY-1) *24+(INITI/100)
                                                                         00000670
    IDAY=LASTDY
    IF (LASTDY.GT.15) IDAY=LASTDY-15
                                                                         00000680
    IGEND=(IDAY-1) *24+(LASTI/100)
                                                                         00000690
                                                                         00000700
    30 TO 40
 30 IQBEG=JWYDY(INITO+INIT)Y+INITYR)
                                                                         00000710
    IGEND=JNWYDY(LASTMO+LAST)Y+LASTYR)
                                                                         00000720
                                                                         00000730
 40 READ (LOARD, 490, END=430) ICARD
    ZOJT=.FALSE.
                                                                         00000740
                                                                         00000750
    CALL NSTRXN (RATIO. IPFILE, OPFILE, MINQ, LAG)
                                                                         00000760
    IF (ZBORT) GO TO 410
                                                                         00000770
    NSTEP=NSTEP+1
    *RITE (LPRNT,500) NSTEP, ICARD
                                                                         00000780
   IF (ZRSTRT) SO TO 10
                                                                         00000790
    IF (ZPLOT.OR.ZPRINT.OR.ZCOMPR) ZOUT=.TRUE.
                                                                         00000800
                                                                         00000810
    ZBEBIN=.TRUE.
                                                                         00000820
    ZEND=.FALSE.
    FTIME=12.
                                                                         00000830
    IF(RI.NE.24.) FTIME=INITI/100
                                                                         00000840
                                                                         00000850
    IQF=IQBEG
                                                                         00000860
    JYEAR=INITYR
                                                                         00000870
    LYEAR=JYEAR
                                                                         00000880
    IF (RI.NE.24.) GO TO 60
    IF (IQF.GT.92) JYEAR=JYEAR-1
                                                                         00000890
                                                                         00000900
    LYEAR=JYEAR-1
                                                                         00000910
OMTIVIENCM 08
    LDAY=INITDY
                                                                         00000920
                                                                      00000930
    JIN=IPFILE-20
                                                                         00000940
    JOUT=OPFILE-20
                                                                         00000950
    IF (JOUT.GT.5) GO TO 70
    IF (ZOUF) GO TO 70
                                                                         00000960
                                                                         00000970
    WRITE (LPRNT, 600) OPFILE
    STOP
                                                                         00000980
70 IF (ZOUT) 30 TO 80
                                                                         00000990
                                                                         00001000
    READ (LOARD,510) STANO1,5TAN41
    #RITE (LPRNT.520) STANO1.STANM1
                                                                         00001010
                                                                         00001020
    50 TO 90
 80 READ (LCARD,530) (INFO(J),J=1,20)
                                                                         00001030
    WRITE (LPRNT+540) INFO
                                                                         00001040
    READ (IRFILE'1) KRECDS.STANO1.STANMI
                                                                         00001050
                                                                         00001060
    IF (.NOT.ZFILE2) GO TO 100
    READ (OPFILE'1) KRECDS.STANOZ.STANY2
                                                                         00001070
                                                                         00001080
90 IAV(JOUT)=2
100 IF (RI.EQ.24.) GO TO 110
                                                                         00001090
    CALL DABSAH (IPFILE, JYEAR, IAV (JIN), ZBORT, LREC (JIN), INITMO, INITDY) 00001100
                                                                         00001110
    GO TO 120
110 CALL DABSAH (IPFILE, JYEAR, IAV (JIN), ZBORT, LREC (JIN))
                                                                         00001120
120 IF (ZBORT) GO TO 420
                                                                         00001130
      (.NOT.ZOUT) GO TO 150
                                                                         00001140
    IF (.NOT.ZFILE2) GO TO 150
                                                                         00001150
    IF (RI.EQ.24.) GO TO 130
                                                                         00001160
    CALL DADSAH (OPFILE, JYEAR, IAV (JOUT), ZBORT, LREC (JOUT), INITMO, INITDY00001170
                                                                         00001180
   1)
```

```
00001190
      30 TO 140
                                                                            00001200
  130 CALL DABSAH (OPFILE, JYEAR, IAV (JOUT), ZBORT, LREC (JOUT))
  140 IF (ZBORT) GO TO 420
                                                                            00001210
                                                                            00001220
      30 TO 160
                                                                            00001230
C
C
                                                                            00001240
C
      INITIALIZE QZ ARRAY TO 0.0
                                                                            00001250
                                                                            00001260
C
                                                                            00001270
  150 CALL FILL (Q2,1,484,ZERO)
C
                                                                            00001280
C
                                                                            00001290
  160 CALL QINPUT (IPFILE.IAV(JIN).ITEMS.Q1.JYEAR.JMON.JDAY)
                                                                            00001300
                                                                            00001310
C
                                                                            00001320
      IF (RI.EQ.24.) GO TO 170
      IF (JYEAR.EQ.LYEAR.AND.JMON.EQ.LMON.OR.JMON.EQ.LMON+1) GO TO 180 00001330
      IF (JYEAR.EQ.LYEAR+1.AND.JMON.EQ.1.AND.LMON.EQ.12) GO TO 180
                                                                            00001340
      30 TO 440
                                                                            00001350
  170 IF (JYEAR-NE-LYEAR+1) GO TO 440
                                                                            00001360
  180 LYEAR=JYEAR
                                                                            00001370
                                                                            00001390
      NOML=NCMJ
                                                                            00001390
      LDAY=JDAY
                                                                            00001400
      IF (.NOT.ZOUT) GO TO 190
                                                                            00001410
      IF (.NOT.ZFILE2) GO TO 190
                                                                            00001420
C
      CALL QINPUT (OPFILE, IAV (JOUT), ITEMZ, QZ, KYEAR, KMON, KDAY)
                                                                            00001430
                                                                            00001440
C
      IF (KYEAR.EQ.JYEAR) GO TO 190
                                                                            00001450
      WRITE (LPRNT.550)
                                                                            00001460
      STOP
                                                                            00001470
  190 IF (RI.EQ.24.) GO TO 200
                                                                            00001480
      IF (JMON.EQ.LASTMO.AND.J)AY.GE.(LASTDY-15).AND.JYEAR.EQ.LASTYR) G000001490
                                                                            00001500
     052 CT 1
      30 TO 210
                                                                            00001510
  200 IF (IGEND.LT.93.AND.JYEARLEQ.LASTYR) GO TO 220
                                                                            00001520
      IF (IQEND.GT.92.AND.JYEAR.EQ.LASTYR-1) GO TO 220
                                                                            00001530
                                                                            00001540
  210 IQL=ITEMS
                                                                            00001550
      30 TO 230
  220 IQLFIQEND
                                                                            00001560
      ZEND=. TRUE.
                                                                            00001570
  230 IF (.NOT.ZOUT) GO TO 240
                                                                            00001580
C
                                                                            00001590
      IF (ZPLOT) GO TO 390
                                                                            00001600
      CALL DATE (RI.ITEMS.FTIMELJMON.JDAY.JYEAR)
                                                                            00001610
                                                                            00001620
      IF (ZPRINT) GO TO 380
      IF (ZCOMPR) GO TO 400
                                                                            00001630
                                                                            00001640
C
                                                                            00001650
C
C
      ROUTE HYDROGRAPH ORDINATES
                                                                            00001660
                                                                            00001670
С
  240 IF (.NOT.ZADO) GO TO 250
                                                                            00001680
                                                                            00001690
C
      INPUT Q3 TO ADD TO THE HYDROGRAPH RESULTING FROM
                                                                            00001700
      THE OPERATIONS SPECIFIED ON THE INSTRUCTION CARD.
                                                                            00001710
C
                                                                            00001720
C
      CALL GINPUT (OPFILE.IAV(JOUT).ITEMS.Q3.KYEAR.KMON.KDAY)
                                                                            00001730
C
                                                                            00001740
      I = (TUOU) \times I = (TUOU) \times I
                                                                            00001750
                                                                            00001760
  250 IF (.NOT.ZRATIO) GO TO 250
                                                                            00001770
                                                                            00001780
С
      MULTIPLY Q1 BY THE RATIO SPECIFIED ON THE INSTRUCTION CARD.
                                                                            00001790
C
```

```
00001800
C
      CALL MULT (Q1. IQF. IQL. RATIO)
                                                                            00001810
                                                                            00001820
C
  260 IF (ZROUTE) GO TO 290
                                                                            00001830
      IF (.NOT.ZADO) GO TO 270
                                                                            00001840
      IF (LAG.LE.0) GO TO 280
                                                                            00001850
      40VE Q1 TO Q2
                                                                            00001860
  270 CALL MOVE (Q1,Q2,IQF,IQL,LAG,0)
                                                                            00001870
                                                                            00001880
      IF (ZAOD) GO TO 320
      30 TO 330
                                                                            00001890
      ADD Q3 TO 21 AND STORE IN Q2 FOR OUTPUT
                                                                            00001900
C
                                                                            00001910
  280 CALL AOD (03,Q1,Q2,IQF,IQL)
                                                                            00001920
      30 TO 330
  290 IF (.NOT.ZBEGIN) GO TO 310
                                                                            00001930
      PEAD PARAMETER CARD
                                                                            00001940
C
                                                                            00001950
C
                                                                            00001960
      READ (LCARD, 490, END=430) ICARD
                                                                            00001970
      WRITE (LPRNT,580) ICARD
C
                                                                            00001980
      DETERMINE PARAMETERS
                                                                            00001990
С
                                                                            00002000
C
      CALL PARAM
                                                                            00002010
C
      CHECK FOR ABORT
                                                                            00005050
      IF (.NOT.ZBORT) GO TO 300
                                                                            00002030
      WRITE (LPRNT.590) ICOL
                                                                            00002040
      30 TO 420
                                                                            00002050
                                                                            00002060
C
      SENERATE UNIT-RESPONSE FUNCTION ALLI
                                                                            00002070
C
C
                                                                            00002090
  300 CALL UNRESP (ZDIFFA, ZMULT, NRESP, ITT)
                                                                            00002090
C
                                                                            00002100
C
                                                                            00002110
      NTAIL=NRESP(1)-1+ITT(1)
                                                                            00002120
                                                                            00002130
C
                                                                            00002140
C
      SO NIATEC OF THE HTTW IS STUDOWNO
                                                                            00002150
  310 CALL CONVOL! (Q2,Q1,UR,IQF,IQL, NRO, NURS, HWAY, ITT, NRESP)
                                                                            00002160
      IF (.NOT.ZADD) GO TO 330
                                                                            00002170
C
                                                                            00002180
C
      400: Q3 TO Q2 AND STORE IN Q2 FOR OUTPUT
                                                                            00002190
                                                                            00005500
C
  320 CALL ADD (03.02.02.10F.12L)
                                                                            00002210
С
                                                                            00002220
  330 IF (ZBEGIN.AND.IQBEG.GT.1) CALL: FILL (Q2.1.IQF-1.NOVAL)
                                                                            00002230
      IF (ZENB.AND.IQEND.LT.ITEMS) CALL FULL (Q2.IQL+1 .ITEMS.NOVAL)
                                                                            00002240
      CALL QOUTPT (OPFILE, IAV (JOUT), ITEMS, Q2, JMON, JDAY, JYEAR)
                                                                            00002250
      IF (ZEND) GO TO 370
                                                                            00002260
      IF (.NOT.ZROUTE) GO TO 340
                                                                            00002270
                                                                            00002250
      MOVE RESIDUAL SUMS TO BEGINNING OF Q2 FOR NEXT YEAR
                                                                            00002290
C
                                                                            00002300
C
                                                                            00002310
      CALL MOVE (Q2.Q2.1.NTAIL.O.ITEMS)
C
                                                                            00002320
      CALL FILL (Q2,NTAIL+1,ITEMS+NTAIL,ZERO)
                                                                            00002330
                                                                            00002340
С
  340 IF (LAG.LE.0) GO TO 350
                                                                            00002350
C
                                                                            00002360
                                                                            00002370
      CALL MOVE (Q2.Q2.1.LAG.0.ITE46)
                                                                            00002380
  350 IF (.NOT.Z3EGIN) GO TO 150
                                                                            00002390
  360 ZBEGIN=.FALSE.
                                                                            00002400
```

```
00002410
      [QF=1
                                                                           00002420
      IF (RI.NE.24.) FTIME=1.0
                                                                           00002430
      30 TO 160
                                                                           00002440
С
                                                                           00002450
С
      WRITE HEADER RECORD ON OUTPUT FILE
C
                                                                           00002460
                                                                           00002470
  370 NRECDS=IAV(JOUT)-1
      WRITE (OPFILE'1) NRECDS+STAND1+STANM1
                                                                           00002480
                                                                           00002490
      30 TO 40
                                                                           00002500
С
                                                                           00002510
C
                                                                            00002520
  380 CALL PRNT (ZBEGIN. ZFILE2)
                                                                           00002530
C
      IF (ZEND) SO TO 40
                                                                           00002540
      IF (ZBEBIN) GO TO 360
                                                                           00002550
                                                                           00002560
      30 TO 160
                                                                            00002570
C
                                                                           00002580
  390 CALL PLOTIT (ZFILE2, ZEND, ZBEGIN, MINQ)
                                                                           00002590
С
      IF (ZEND) SO TO 40
                                                                           00002600
      IF (ZBEBIN) GO TO 360
                                                                           00002610
                                                                           00002620
      30 TO 160
                                                                           00002630
C
  400 CALL COMPAR (ZFILE2.ZEND.ZBEGIN.NTSO)
                                                                           00002640
                                                                           00002650
C
      IF (ZEND) 30 TO 40
                                                                            00002660
      IF (ZBEBIN) GO TO 360
                                                                           00002670
                                                                            00002680
      30 TO 160
                                                                            00002690
С
  410 WRITE (LPRNT.590) ICOL
                                                                            00002700
                                                                           00002710
C
  420 WRITE (LPRNT,560)
                                                                            00002720
  430 STOP
                                                                            00002730
C
                                                                            00002740
       GAP IN DATA ***
                                                                            00002750
С
  440 WRITE (LPRNT.570) JMON.JJAY.JYEAR.LMON.LOAY.LYEAR
                                                                            00002760
                                                                            00002770
      30 TO 420
C
                                                                            00002780
C
                                                                            00002790
                                                                            00002800
                                                                            00002810
  450 FORMAT (1H1)
  460 FORMAT (1H1,27HUNIT RESPONSE ROUTING MODEL)
                                                                           00002820
  470 FORMAT (915,F5.0,15)
                                                                            00002830
  480 FORMAT (1H0,11%,14HFOR THE PERIOD,213,215,3H TO,213,215/11%,40HTHE00002840
                                                                           00002850
     1 FOLLOWING STEPS HAVE BEEN PERFORMED./)
  490 FORMAT (80A1)
                                                                            00002860
  500 FORMAT (1H0//11x.11H****STEP =, I3.3X, 214DATA INPUT CARDS*****/11X00002870
                                                                            00002880
     1.80A1)
  510 FORMAT (2A4.2X.12A4)
                                                                            00002900
  520 FORMAT (1H +11X+2A4+2X+12A4)
                                                                            00002910
  530 FORMAT (2044)
                                                                            00002920
  540 FORMAT (1H +11X+2044)
                                                                            00002930
  550 FURMAT (1H0,11X,16HYEARS MISMATCHED)
  560 FORMAT (1H0,11X,5(1H+),11HJOB ABORTED,5(1H+))
  570 FORMAT (1H0+11X+30HGAP INIDATA+JMON+JDAY+JYEAR = +314+19H LMON+LDA00002950
                                                                           00002960
     1Y+LYEAR = +314)
  580 FORMAT (1H .11X,80A1)
                                                                            00002970
  590 FORMAT (1H0.11X.23HINVALID DATA IN COL. = .13)
                                                                            00002950
  600 FORMAT (1H0+11X+254INVALID OUTPUT FILE NO. +12)
                                                                            00002990
                                                                            00003000
      FNO
      BLOCK DATA
                                                                            00003010
```

```
00003020
CC
      1 OCT 76
                                                                           00003030
                                                                           00003040
      IMPLICIT LOGICAL(Z) . INTEGER(A)
                                                                           00003050
      COMMON /DAYSMO/ MODAYS(12)
                                                                           00003060
      COMMON /ZLOGIC/ ZOPER(20),ZDONE,ZBORT
                                                                           00003070
      COMMON /ALFWRD/ ARATIO(5).ARDUTE(5).AADD(3).APLOT(4).APRINT(5).ADM00003090
     IN(4), ACOMPR(7), ARSTRT(7), ALAG(3)
                                                                           00003090
      COMMON /ALFCHI/ ALPHAI.ALPHAR.ALPHAA,ALPHAD.ALPHAP.ALPHAF.ALPHAS.A00003100
     1-PHAQ. ALPHAC
                                                                           00003110
      COMMON /ALFDIG/ ADIGIT(9).AZERO-
                                                                           00003120
      COMMON /ALFCHS/ ANEGSN.APDINT.ACOMMA.AMINUS.APLUS.AQUEST
                                                                           00003130
      DATA MOBAYS/31.28.31.30.31.30.31.30.31.30.31/
                                                                           00003140
      DATA ARATID/+R+,+A+,+T+,+I+,+O+/,AROUTE/+R+,+O+,+U+,+T+,+E+/,AADD/0003150
     1·4·,·D·,·D·/,4PLOT/•P·,·LH·•10·,•T·/,4PRINT/•P·••R·•I·,•N·•·T·/,4Q00003160
     2414/.Q.,.M.,.I.,.N./,ALP4AS/.S./,ALP4AF/.F./,AZERO/.O./.ADIGIT/.1.00003170
     3. 121, 131, 141, 151, 161, 171, 181, 191/. APOINT/1.1/. ANEQSN/!=1/. ACOMMA/100003180
     4."/,ZDONE/.FALSE./.ALPHAI/!I"/,ALPHAR/!R"/,ALPHAP/!P"/,ALPHAA/!A"/00003190
     5.ALPHA0/'0'/,ALPHAQ/'Q'/,ALPHAC/'C'/,ACOMPR/'C','0','M','P','A','R00003200
     6'+'E'/+AMINUS/"-'/.APLUS/++'/+AQUEST/'?'/+ARSTRT/'R'+'E'+'S'+'T'+'00003210
     74'. 'R', !T'/, 4LAG/!L', 'A', 'G'/
                                                                           00003220
                                                                           00003230
      END.
      SUBROUTINE COMPAR (ZFILE2.ZEND.ZBEGIN.NTSO)
                                                                           00003240
C
                                                                           00003250
                                                                           00003250
      27 JUNE 1978
C
C
      THIS VERSION OF COMPAR FOR PROGRAM J351
                                                                           00003270
                                                                           00003280
                                                                           00003290
      LOGICAL ZBEGIN.ZEND.ZFILEZ
      DIMENSION Q1(384),Q2(484),DEV(384),INFO(20),CARD(24)
                                                                           00003300
      INTEGER STAND1(2).STAND2(2).STANH1(12).STANH2(12)
                                                                           00003310
      COMMON /82/ IYEAR(384), IDAY(384), IMON(384), TIME(384)
                                                                           00003320
      COMMON /DISCHG/ 21.02
                                                                           00003330
      COMMON /IQVALU/ IQF.IQL
                                                                           00003340
      COMMON /PLT/ INFO.INITMO.INITDY.INITYR.LASTMO.LASTDY.LASTYR.STANO100003350
     1.STANM1.STANO2.STANM2
                                                                           00003360
      COMMON /UNITS/ LCARD.LPRNT
                                                                           00003370
C
                                                                           00003390
      IF (ZBEGIN) SO TO I
                                                                           00003390
      IF (ICNT.LT.50) GO TO 10
                                                                           00003400
    1 #RITE (LPRNT.80) INFO, INITMO, INITDY, INITYR, LASTMO, LASTDY, LASTYR
                                                                           00003410
      #RITE (LPRNT.90) STANO1.STANY1.STANO2.STANY2
                                                                           00003420
      IF (NTSO.EQ.1.0R.NTSO.EQ.3) GO TO 2
                                                                           00003430
                                                                           00003440
      WRITE (LPRNT, 120)
    2 ICNT=0
                                                                           00003450
      IF (.NOT.ZBEGIN) GO TO 10
                                                                           00003460
      IF (NTSO.LT.2) GO TO 5
                                                                           00003470
      VD = 0
                                                                           00003480
      write(17+140) Stano1.Stanm1.INITMO.INITDY.INITYR.
                                                                           00003490
         LASTHO, LASTDY, LASTYR
                                                                           00003500
      #RITE(18,140) STANO2, STANM2, INITMO, INITDY, INITYR.
                                                                           00003510
                                                                           00003520
         LASTMO, LASTDY, LASTYR
      wRITE(19,150) INFO, STANO1, STAN41, STANO2, STAN42,
                                                                           00003530
                                                                           00003540
         INITMO, INITDY, INITYR, LASTYO, LASTDY, LASTYR
    5 DEVET=0
                                                                           00003550
      ONEGT=0.0
                                                                           00003560
                                                                           00003570
      0.0=78C9C
      VOLQ1T=0.00
                                                                           00003580
      VOLQZT=0.00
                                                                           00003590
                                                                           00003600
      VOVEGT=0
      YOPOST=0
                                                                           00003610
      IETTOS = 0
                                                                           00003620
```

```
00003630
      IETT10 = 0
                                                                             00003640
      IETT15 = 0
                                                                             00003650
      IETT20 = 0
      IETT25 = 0
                                                                             00003660
                                                                             00003670
   10 DEV2=0.0
                                                                             00003690
      DEVPOS=0.0
                                                                             00003700
      VOLQ1=0.00
                                                                             00003710
      VOLQ2=0.00
                                                                             00003720
      NONEG=0
      NOPOS=0
                                                                             00003730
                                                                             00003740
      IERROS # 0
                                                                             00003750
      IERR10 = 0
                                                                             00003760
      IERR15 = 0
                                                                             00003770
      IERR20 = 0
                                                                             00003780
      IERR25 # 0
                                                                             00003790
      DO 40 IQ=IQF,IQL
                                                                             00003800
      DEV(IQ) = (Q1(IQ) - Q2(IQ)) + 100 \cdot 0/Q2(IQ)
                                                                             00003810
      DEV2=DEV2+(DEV(IQ)++2)
      IF (DEV(IQ).LT.0.0) GO TO 20
                                                                             00003820
                                                                             00003830
      DEVPOS=BEVPOS+DEV(IQ)
                                                                             00003840
      NOP85=N8P05+1
                                                                             00003850
      GO TO 30
                                                                             00003860
   20 DEVNEG=BEVNEG+DEV(IQ)
                                                                             00003870
      YOVEG=NANEG+1
                                                                             00003880
   30 VOLQ1=V0LQ1+Q1(IQ)
                                                                             00003890
      VOLQ2=V0LQ2+Q2(IQ)
   40 CONTINUE
                                                                             00003900
                                                                             00003910
      IF(NTSO.EQ.1.OR.NTSO.EQ.3) GO TO 61
                                                                             00003920
      DO 60 J=IQF,IQL
      IF (ICNT.LT.50) GO TO 50
                                                                             00003930
      #RITE (LPRNT,80) INFO.INITMO.INITDY.INITYR.LASTMO.LASTDY.LASTYR
                                                                             00003940
      WRITE (LPRYT, 90) STANO1, STANY1, STAYOZ, STANY2
                                                                             00003950
                                                                             00003960
      WRITE (LPRNT, 120)
                                                                             00003970
      ICYT=0
   50 WRITE(LBRNT.100) (IMON(J).IDAY(J).IYEAR(J).TIME(J).Q1(J).
                                                                             00003980
                                                                             00003990 .
        35(T) *DEV(T))
                                                                             00004000
      ICYT=ICNT+1
                                                                             00004010
      ERROR = DEV(J)
                                                                             00004020
      IF (ABS (ERROR) .LE.5.0)
                              IERRO5 = IERRO5 + 1
      IF(ABS(ERROR).LE.10.0) IERR10 = IERR10 + 1
                                                                             00004030
                                                                             00004040
      IF(ABS(ERROR).LE.15.0) IERR15 = IERR15 + 1
      IF(ABS(ERROR).LE.20.0) IERR20 = IERR20 + 1
                                                                             00004050
                                                                             00004060
      IF(ABS(ERROR).LE.25.0) IERR25 = IERR25 + 1
   60 CONTINUE
                                                                             00004070
                                                                             00004080
С
                                                                             00004090
   61 IF(NTSO.LT.2) GO TO 66
                                                                             00004100
      00 65 IQ = IQF \cdot IQL
                                                                             00004110
      4D=ND+1
                                                                             00004120
      CARD(ND) =Q1(IQ)
                                                                             00004130
      CARD(ND+8) = Q2(IQ)
                                                                             00004140
      CARD(ND+16) =DEV(IQ)
                                                                             00004150
      IF(NO.EQ.8) GO TO 63
      IF(IQ.EQ.IQL.AND.ZEND) GO TO 63
                                                                             00004160
                                                                             00004170
      30 TO 65
   63 WRITE(13,130) (CARD(N),N=1,ND)
                                                                             00004180
                                                                             00004190
      ND=ND+8
                                                                             00004200
      #RITE(18,130) (CARD(N),N=9,ND)
                                                                             00004210
      ND=ND+R
                                                                             00004220
      #RITE(19.130) (CARD(N).N=17.ND)
                                                                             00004230
      VD=0
```

```
00004240
   65 CONTINUE
   66 NOBS=NONEG+NOPOS
                                                                                  00004250
                                                                                  00004260
      DEVTOT= (DEVPOS-DEVNEG) /NOBS
      DEV2T=DEV2T+DEV2
                                                                                  00004270
                                                                                  00004280
       DNEGT=DNEGT+DEVNEG
      OPOST=DROST+DEVPOS
                                                                                  00004290
                                                                                  00004300
       NONEGT=NONEGT+NONEG
                                                                                  00004310
       NOPOST=NOPOST+NOPOS
                                                                                  00004320
      VOLQIT=VOLQIT+VOLQI
                                                                                  00004330
      VOLQ2T=VOLQ2T+VOLQ2
                                                                                  00004340
      DEVZ=SQRT (DEVZ/NOBS)
      IF (NONE8.EQ.0) GO TO 67
                                                                                  00004350
                                                                                  00004360
      DEVNEG=BEVNEG/NONEG
                                                                                  00004370
   67 IF (NOPOS.EQ. 0) GO TO 68
                                                                                  00004380
      DEVPOS=DEVPOS/NOPOS
   68 VOLERR=(VOLQ1-VOLQ2)+100.0/VOLQ2
                                                                                  00004390
       WRITE(LARNT, 105) IYEAR (365)
                                                                                  00004400
       WRITE (LPRNT, 110) NOBS. DEVTOT. NONES. DEVNEG. NOPOS. DEVPOS.
                                                                                  00004410
     +VOLQ1.VOLQ2.VOLERR.DEV2
                                                                                  00004430
      IETTOS = IETTOS + IERROS
      IETT10 = IETT10 + IERR10
                                                                                  00004440
      IETT15 = IETT15 + IERR15
                                                                                  00004450
      IETT20 = IETT20 + IERR20
                                                                                  00004460
      IETT25 = IETT25 + IERR25
                                                                                  00004470
      IERROS = (IERROS + 100 + .0001 ) / NOBS
                                                                                  00004490
      IERR10 = (IERR10 + 100 + .. 0001 ) / NOBS
                                                                                  00004490
      IERR15 = (IERR15 + 100 + .0001 ) / NOBS
                                                                                  00004500
      IERR20 = (IERR20 + 100 + .0001 ) / NOBS
IERR25 = (IERR25 + 100 + .0001 ) / NOBS
IDEST = 100 - IERR25 + .0001
                                                                                  00004510
                                                                                  00004520
                                                                                  00004530
      #RITE(LPRNT,900) IERRÖS.IERR10.IERR15.IERR20.IERR25.IREST
                                                                                  00004540
     =ORMAT(//+1x+15+ + PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 5 00004550
                                                                                   00004560
     *PERCENT .
     */.1X.15.* PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 10 PERCENT 00004570 */.1X.15.* PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 15 PERCENT 00004580 */.1X.15.* PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 20 PERCENT 00004590
     */.1X.15. PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 25 PERCENT 00004600
     */*1x,15, PERCENT OF TOTAL OBSERVATIONS HAD ERRORS > 25 PERCENT 00004610
                                                                                   00004620
     •)
      ICNT=ICNT+20
                                                                                   00004630
      IF (ZEND) GO TO 70
                                                                                   00004640
                                                                                  00004650
C
      RETURN
                                                                                  00004660
C
                                                                                  00004670
                                                                                  00004680
   70 IF (ZBEGIN) RETURN
      NO3S=NONEGT+NOPOST
                                                                                  00004690
      DEVTOT= (DPOST-DNEGT) / NOBS
                                                                                  00004700
                                                                                  00004710
      IF (NONEST.EQ.0) GO TO 71
                                                                                  00004720
      DNEGT=DNEGT/NONEGT
                                                                                  00004730
   71 IF (NOPOST.EQ.0) GO TO 72
                                                                                  00004740
      DPOST=DPOST/NOPOST
   72 VOLERR=(VOLQ1T-VOLQ2T) *100.0/VOLQ2T
                                                                                  00004750
                                                                                  00004760
      DEV2T=SQRT (DEV2T/NOBS)
                                                                                  00004770
      #RITE(LPRNT.106)
      WRITE (LPRNT.110) NOBS.DEVTOT.NONEGT.DNEGT.NOPOST.DPOST.
                                                                                  00004780
                                                                                  00004790
         VOLOIT. VOLOZT. VOLERR. DEVZT
                                                                                  00004800
      IETT05 = (IETT05 * 100 + .0001) / NOBS
      IETT10 = (IETT10 * 100 + .0001) / NDBS
                                                                                  00004810
      IETT15 = (IETT15 * 100 + .0001) / NOBS
                                                                                  00004820
      IETT20 = (IETT20 + 100 + .0001) / NOBS
                                                                                  00004830
      IETT25 = (IETT25 + 100 + .0001) / NOBS
                                                                                   00004840
```

```
IREST = 100 - IETT25 + .0001
                                                                                00004850
                                                                                00004860
       WRITE(LPRNT, 900) IETTOS. IETT10. IETT15. IETT20. IETT25. IREST
                                                                                00004870
C
      RETURN
                                                                                00004880
                                                                                00004890
С
                                                                                00004900
   80 FORMAT (1H1+11X+20A4/11X+4HFROM+213+15+3H T0+213+15)
                                                                                00004910
   90 FORMAT (16x,27HQ1 IS DISCHARGE AT STATION ,2A4,24, ,12A4/16x,27HQ200004920
                                                                                00004930
     I IS DISCHARGE AT STATION , 2A4, 2H, , 12A4)
  100 FORMAT (11x.213.15.F10.2.3F10.1) 00004940 110 FORMAT (1H .10x.18HMEAN ERROR (%) FOR.15.7H DAYS =.F7.2/1H .10x.2000004950
     14MEAN - ERROR (%) FOR, 15, 74 DAYS =, F7.2/14 , 10x, 204MEAN + ERROR (%00004960
     2) FOR. 15.7H DAYS =. F7.2/1H .10x.17HQ1 VOLUME (SFD) =. F9.0./
                                                                                00004970
     3 14 +10x+17HQ2 VOLUME (SFD) =+F9+0+/1H +10x+18HV0LUME ERROR (%) =+00004980
     4 F7.2/1H +10X.15HR4S ERROR (%) =+F7.2)
                                                                               00004990
  120 FORMAT (/15X.4HDATE.9X.4HTIME.7X.2HQ1.8X.2HQ2.5X.5HERROR/
                                                                                00005000
          37X+2(54(CFS)+5x)+3H(8)/)
                                                                                00005010
  130 FORMAT (8F9.2)
                                                                                00005020
  140 FORMAT(1H /14 /2A4,2H; +12A4/6I5)
                                                                                00005030
  150 FORMAT(20A4/2A4.2H; ,12A4/2A4.2H; ,12A4/6I5)
105 FORMAT(1H0,10x,7H ****,15.17H WY SUMMARY *****)
106 FORMAT(1H0,10x,27H ***** TOTAL: SUMMARY *****)
                                                                               00005040
                                                                                00005050
                                                                                00005060
                                                                                00005070
      SUBROUTINE DABSAH (IFILE.IYEAR.IREC.ABORT.NRECDS)
                                                                                00005080
                                                                                00005090
C
С
      1 OCT 76
                                                                                00005100
      SETS THE RECORD POINTER TO THE FIRST RECORD: OF
                                                                                00005110
C
                                                                                00005120
      DAILY DATA YOU ARE INTERESTED IN.
C
                                                                                00005130
C
                                                                                00005140
      (S) PINSION ISKIP(2)
      LOGICAL' ABORT
                                                                                00005150
      NREGDS IS THE NUMBER OF LAST DATA RECORD.
С
                                                                                00005160
      READ (IFILE*1) NRECOS
                                                                                00005170
      READ (IFILE'S) ISKIP, IYRLD
                                                                                00005180
      IF (IYEAR-LT-IYRLO) GO TO 90
                                                                                00005190
      IF (IYEAR.NE.IYRLO) GO TO 10
                                                                                00005200
      IREC=2
                                                                                00005210
      RETURN
                                                                                00005220
   10 IREC=2+1YEAR-IYRLO
                                                                                00005230
      IRECL0=2
                                                                                00005240
      IF (IREC.GT. VRECDS) GO TO 20
                                                                                00005250
      READ (IRILE*IREC) ISKIP. MIDYR
                                                                                00005260
                                                                                00005270
      IF (IYEAR.EQ.MIDYR) RETURN
                                                                                00005280
       IKECHI=IREC
                                                                                00005290
      IYRHI=MIDYR
                                                                                00005300
      30 TO 40
   20 READ (IBILE NRECDS) ISKIPLIYRHI
                                                                                00005310
      IF (IYEAR.GT.IYRHI) GO TO 90
                                                                                00005320
      IF (IYEAR.NE.IYRHI) GO TO 30
                                                                                00005330
      IREC=NRECDS
                                                                                00005340
      RETURN
                                                                                00005350
   30 IRECHI=NRECDS
                                                                                00005360
   40 IREC=IRECHI-IYRHI+IYEAR
                                                                                00005370
                                                                                00005380
      IF (IREC.LT.IRECLO) GO TO 50
      READ (IFILE*IREC) ISKIP+MIDYR
                                                                                00005390
      IF (IYEAR.EQ.MIDYR) RETURN
                                                                                00005400
      IRECLO= IREC-
                                                                                00005410
      IYRLO=MIDYR'
                                                                                00005420
                                                                                00005430
   50 00 80 IDO=1.10
      IF (IRECLO.EQ.IRECHI-1) 30 TO 90
                                                                                00005440
      IREC=(IRECLO+IRECHI)/2
                                                                                00005450
```

```
00005460
       READ (IFILE IREC) ISKIP , MIDYR
      IF (IYEAR.EQ.MIDYR) RETURN
                                                                           00005470
                                                                           00005480
       INCYR=IYEAR-MIDYR
                                                                           00005490
       JREE=IREC+(INCYR-ISIGN(1,INCYR))
       IF (JREG.LE.IRECLO.OR.JREC.GE.IRECHI) GO TO 60
                                                                           00005500
       READ (IFILE JREC) ISKIP JYEAR
                                                                           00005510
                                                                           00005520
       IF (IYEAR.NE.JYEAR) GO TO 60
                                                                           00005530
      IREC=JREC
      RETURN
                                                                           00005540
                                                                           00005550
   60 IF (MIDYR.GT.IYEAR) GO TO 70
       IRECLO=IREC
                                                                           00005560
                                                                           00005570
       30 TO 80
   70 IRECHI=IREC-
                                                                           00005580
                                                                           00005590
   80 CONTINUE
                                                                           00005600
   90 WRITE (6.100) IYEAR, IFILE
                                                                           00005610
      ABORT - TRUE.
                                                                           00005620
       RETURN
                                                                           00005630
C
  100 FORMAT (1H0.14.25H (INITY) NOT IN FILE NO. . 12)
                                                                           00005640
                                                                           00005650
       SUBROUTINE DADSAM (IFILE.IYEAR.IREC.ABORT. WRECDS.INITMO.INITDY)
                                                                           00005660
ı
                                                                           00005670
C
      1 OCT 76
                                                                           00005680
C
      SETS THE RECORD POINTER TO THE FIRST RECORD OF
                                                                           00005690
C
       HOURLY DATA YOU ARE INTERESTED IN.
                                                                           00005700
С
                                                                           00005710
C
                                                                           00005720
      LOGICAL ABORT
       NRECDS IS THE NUMBER OF LAST DATA RECORD.
                                                                           00005730
C
       READ (IFILE!1) NRECOS
                                                                           00005740
                                                                           00005750
      READ (IFILE'S) JMON.JDAY, IYRLD
      IF (IYEAR.LT.IYRLO) GO TO 110
                                                                           00005760
      IYROF=IYEAR
                                                                           00005770
      IF (INITHO.LT.10) IYRDF=IYEAR-1
                                                                           00005780
      IREC=1+(IYROF-IYRLO)*24+2*(INITMO+13-JMON-(INITMO/10)*12)
                                                                           00005790
      IF (JDAY.GT.15) IREC=IREC-1
                                                                           00005800
         (INITDY.LT.16) IREC=IREC-1
                                                                           00005810
      IF (IREC.EQ.2) RETURN
                                                                           00005820
      IRECLO=2
                                                                           00005830
      IF (IREC.GT.NRECDS) GO TO 20
                                                                           00005840
      READ (IFILE IREC) MIDMO, MIDDY, MIDYR
                                                                           00005850
      IF (IYEAR.NE.MIDYR.OR.INITMO.NE.MIDMO) GO TO 10
                                                                           00005860
      IF (INITDY.LT.16.AND.MIDDY.EQ.1.OR.INITDY.ST.15.AND.MIDDY.EQ.16) R00005870
     ETURN
                                                                           00005880
   10 IRECHI=IREC
                                                                            00005890
                                                                           00005900
      IYRHI=MIDYR
                                                                           00005910
      OMGIM=IHCMI
                                                                           00005920
      IDYMI=MIDOY
      50 TO 40
                                                                           00005930
                                                                           00005940
   20 READ (IFILE NRECDS) IMOHI.IDYHI.IYRHI
                                                                           00005950
      IF (IYEAR.GT.IYRHI) GO TO 110
      IF (IYEAR.NE.IYRHI.OR.INITMO.NE.IMOHI) GO TO 30
                                                                           00005960
                                                                           00005970
      IREG=NRECDS
      IF (IDYMI.GT.15) IREC=NRECDS-1
                                                                           00005980
      IF (INITDY.GT.15) [REC=NRECDS
                                                                           00005990
      RETURN
                                                                           00006000
                                                                           00006010
   30 IRECHI=NRECDS
   40 IREC=24*(-IYRHI+IYEAR)+IRECHI-(IMOHI-INITMO)*2+1
                                                                           00006050
                                                                           00006030
      IF (IREC.LT.IRECLO) GO TO 60
                                                                           00006040
      IF (INITDY.LT.16) IREC=IREC-1
      IF (IDYMI.ST.15) IREC=IREC-1
                                                                           00006050
                                                                           00006060
      READ (IFILE IREC) MIDMO, MIDDY, MIDYR
```

```
IF (IYEAR. NE. MIDYR. OR. INIT MO. NE. MIDMO) GO TO 50
                                                                             00006070
      IF (INITDY.LT.16.AND.MIDDY.EQ.1.OR.INITDY.GT.15.AND.MIDDY.EQ.16) R00006080
     EEFURN
                                                                             00006090
   50 IRECLO=IREC
                                                                              00006100
   60 JO 100 IDO=1.10
                                                                              00006110
      IF (IREGLO.EQ.IRECHI-1) 30 TO 110
                                                                              00006120
                                                                              00006130
      IREC=(IRECLO+IRECHI)/2
                                                                              00006140
      READ (IFILE IREC) MIDMO, MIDDY, MIDYR
      IF (IYEAR. WE.MIDYR.OR.INITMO.NE.MIDMO) GO TO TO 00006160
IF (INITDY.LT.16.AND.MIDDY.EQ.1.OR.INITDY.ST.15.AND.MIDDY.EQ.16) R00006160
                                                                              00006170
     IETURN
   70 INCYR=24*(IYEAR-MIDYR)+2*(INITMO-MIDMO)
                                                                              00006180
                                                                              00006190
      JREC=IREC+INCYR
      IF (INITDY.LT.16.AND.MIDDY.GT.15) JREC=JREC-1
                                                                              00006200
         (INITDY.GT.15.AND.MIDDY.LT.16) JREC=JREC+1
                                                                              00006210
      IF (JREC.LE.IRECLO.OR.JREC.GE.IRECHI) GO TO 80
                                                                              00006220
      READ (IFILE JREC) JMON.JJAY.JYEAR
                                                                              00006230
      IF (IYEAR.NE.JYEAR.OR.INITMO.NE.JYON) GO TO 90
                                                                              00006240
      IF (INITDY.LT.16.AND.JDAY.NE.1.OR.INITDY.GT.15.AND.JDAY.NE.16) 60 00006250
     1TO 80
                                                                              00006260
      IREC=JREC
                                                                              00006270
                                                                              00006280
      RETURN
                                                                              00006290
   80 IF (MIDYR.GT.IYEAR.OR.MIDMO.GT.INITMO) GO TO 90
      IRECLO=IREC
                                                                              00006300
                                                                              00006310
      30 TO 100
                                                                              00006320
   90 IRECHI=IREC
                                                                              00006330
  100 CONTINUE
                                                                              00006340
  110 WRITE (6.120) IYEAR, INITHO, INITOY, IFILE
      ABORT=.TRUE.
                                                                              00006350
      RETURN
                                                                              00006360
                                                                              00006370
C
  120 FORMAT (1H0.14.212.25H (INITY) NOT IN FILE NO. +12)
                                                                              00006380
                                                                              00006390
      SUBROUTINE DATE (DD, NORDS, FTIME, INITM, INITO, INITY)
                                                                              00006400
                                                                              00006410
      1 OCT 76
                                                                              00006420
      FILLS UP ARRAYS WITH THE DAY, MONTHY YEAR, AND
                                                                              00006430
С
      TIME FOR PRINTOUT OF THE HYDROGRAPH'S
                                                                              00006440
С
                                                                              00006450
      COMMON /DAYSMO/ MODAYS(12)
                                                                              00006460
      COMMON /82/ IYEAR(384).IDAY(384).IMON(384).TIME(384)
                                                                              00006470
      IYEAR(1) = INITY
                                                                              00006480
                                                                              00006490
      PS=(S)2YAOCM (0.93.(4.YTINI)DOM) IF
                                                                              00006500
      CTIMI=(I)YAGI
      IMON(1)=INITM
                                                                              00006510
      PTIMI=MOPOM
                                                                              00006520
      TIME(1)=FTIME
                                                                              00006530
                                                                              00006540
      20 10 J=2+NORDS
      TIME(J) = TIME(J-1)+00
                                                                              00006550
                                                                              00006560
      IDAY(J) = IDAY(J-1)
                                                                              00006570
      (1-U) MOMI = (U) MOMI
      IYEAR(J)=IYEAR(J-1)
                                                                              00006580
      IF (TIME(J).LE.24.0) GO TO 10
                                                                              00006590
      TIME(J)=TIME(J)-24.0
                                                                              00006600
                                                                              00006610
      IDAY(J) = IDAY(J) +1
                                                                              00006620
      IF (IDAY(J).LE.MODAYS(NOMON)) GO TO 10
      IDAY(J)=1
                                                                              00006630
      I HYOMON=NOPOY
                                                                              00006640
                                                                              00006650
      IF (NOMON.GT.12) NOMON=1
      NOPON= (L) NCMI
                                                                              00006660
                                                                              00006670
      IF (NOMON.GT.1) GO TO 10
```

```
00006680
      IYEAR(J) = IYEAR(J) + 1
                                                                            00006690
      85=(5)2YACOP
                                                                            00006700
      YYEAR=IYEAR(J)
      IF (MOD(NYEAR.4).EQ.0) MODAYS(2)=29
                                                                            00006710
                                                                            00006720
   10 CONTINUE
                                                                            00006730
      IF (MODAYS(2).EQ.29) MODAYS(2)=28
      85=(5)2YACO>
                                                                            00006740
                                                                            00006750
      RETURN
                                                                            00006760
      END.
      SUBROUTINE GETINT (INTNO)
                                                                            00006770
                                                                            00006780
C
      1 OCT 76
                                                                            00006790
      TRANSLATES A STRING OF DIGITS FROM EITHER INSTRUCTION
                                                                            00006800
С
      OR PARAMETER CARDS TO INTEGER OR REAL NUMBERS.
                                                                            00006810
C
                                                                            00006820
C
      IMPLICIT LOGICAL (Z) . INTESER (A)
                                                                            00006830
      COMMON /ZLOGIC/ ZOPER(20).ZDONE.ZBORT
                                                                            00006840
      COMMON /INSTCD/ ICARD(80),ICOL
                                                                            00006850
      COMMON /ALFCHS/ ANEQSN.APDINT.ACOMMA.AMINUS.APLUS
                                                                            00006860
      COMMON /ALFDIG/ ADIGIT(9).AZERO
                                                                            00006870
      DIMENSION INTGR(10)
                                                                            00006880
      ZINT=.TRUE.
                                                                            00006890
                                                                            00006900
      30 TO 10
      ENTRY GETFLE (FLTNO)
                                                                            00006910
      ZINT=.FALSE.
                                                                            00006920
                                                                            00006930
      7DEC=.FALSE.
   10 CALL FIND (ANERSY)
                                                                            00006940
      CALL SKIP
                                                                            00006950
                                                                            00006960
   20 DO 30 I=1.10
      INTGR(I)=0
                                                                            00006970
   30 CONTINUE
                                                                            00006980
                                                                            00006990
      VDIG=0
      IF (ZDEC.OR.ZINT) GO TO 50
                                                                            00007000
                                                                            00007010
      513N=1.0
      IF
         (ICARD(ICOL).EQ.APLUS) GO TO 70
                                                                            00007020
      IF (ICARD(ICOL) .NE.AMINUS) GO TO 40
                                                                            00007030
      SIGN=-1.0
                                                                            00007040
      GO TO 70
                                                                            00007050
   40 IF (ICARD(ICOL).NE.APOINT) 60 TO 50
                                                                            00007060
      DEE=.TRUE.
                                                                            00007070
                                                                            00007080
      30 TO 70
   50 IF (ICARD(ICOL).NE.AZERO) GO TO 80
                                                                            00007090
      IDIG=0
                                                                            00007100
                                                                            00007110
   60 VDIG=NDIG+1
      INTGR(NDIG) = IDIG
                                                                            00007120
   70 ICOL=ICOL+1
                                                                            00007130
                                                                            00007140
      IF (ICOL.LE.BO) GO TO 50
      ZDONE=.TRUE.
                                                                            00007150
      60 TO 100
                                                                            00007160
   80 00 90 I=1,9
                                                                            00007170
      IDIG=I
                                                                            00007180
      IF (ICARD(ICOL).EQ.ADIGIT(I)) GO TO 60
                                                                            00007190
  90 CONTINUE
                                                                            00007200
  100 INTNO=0
                                                                            000.07210
      DO 110 I=1.NDIG
                                                                            00007220
      INTNO=INTNO+INTGR(I)+(10++(NDIG-I))
                                                                            00007230
  110 CONTINUE
                                                                            00007240
      IF (ZINT) RETURN
                                                                            00007250
      IF (ZDEC) GO TO 120
                                                                            00007260
      FLTNO=INTNO+SIGN
                                                                            00007270
      IF (ICARD(ICOL).NE.APOINT) RETURN
                                                                            00007280
```

```
00007290
      ZDEC=.TRUE.
                                                                             00007300
      ICOL=ICOL+1
                                                                             00007310
      30 TO 20
  120 FLTNO=FLTNO+SIGN*(FLOAT(INTNO))/(10**NDIG)
                                                                             00007320
                                                                             00007330
      RETURN
                                                                             00007340
      END:
                                                                             00007350
      SUBROUTINE HYDROG (K.DELTAT.X)
                                                                             00007360
C
                                                                             00007370
C
      1 OCT 76
      ROUTES THE TRIANGULAR TRANSLATION HYDROGRAPH THROUGH CHANNEL STORAGE FOR COMPUTING THE JNIT RESPONSE USING
                                                                             00007380
C
                                                                             00007390
C
C
      THE STORAGE CONTINUITY METHOD.
                                                                              00007400
                                                                              00007410
      REAL I.K
                                                                              00007420
      COMMON /INFLO/ I(999)
COMMON /INSTQ/ Q(999)
                                                                              00007430
                                                                              00007440
                                                                              00007450
      CALL FILL (Q.1,999.0.0)
                                                                              00007460
      QQ=0_0
                                                                              00007470
      00 50 J=2.999
                                                                              00007480
      IF (QQ) 20.10.20
   10 2(J)=I(J)
                                                                              00007490
                                                                              00007500
      GO TO 30
   20_2(J) = (I(J-1)+I(J)-2(J-1)+(2.0+x+k+2(J-1))/5ELTAT+((Q(J-1)+2Q)/2.0)0007510
     1++(x-1.0))/(((2.0+x+K)/DELTAT)+((Q(J-1)+QQ)/2.0)++(x-1.0)+1.0)
                                                                              00007520
      IF (Q(J).LE.0.00001) RETURN
                                                                              00007530
   30 IF (ABS((Q2-Q(J))/Q(J)).LE.0.001) 30 TO 40
                                                                              00007540
      20=0(J)
                                                                              00007550
                                                                              00007560
      30 TO 20
   40 IF (Q(J).GT.2(J-1)) QQ=1.10*2(J)
                                                                              00007570
                                                                              00007580
      IF (Q(J).LE.Q(J-1)) QQ=0.90+Q(J)
   50 CONTINUE
                                                                              00007590
                                                                              00007600
      RETURN
                                                                              00007610
      END:
      SUBROUTINE INFLOW (D.DELTAT)
                                                                              00007620
                                                                              00007630
      1 OCT 76
      COMPUTES THE TRIANGULAR TRANSLATION HYDROGRAPH FOR
                                                                              00007640
                                                                              00007650
      COMPUTING THE UNIT RESPONSE USING THE STORAGE.
C
C
      CONTINUITY METHOD.
                                                                              00007660
                                                                              00007670
C
      COMMON /INFLO/ I(999)
                                                                              00007680
                                                                              00007690
      REAL I.INSTR. INSTF
                                                                              00007700
      INSTR(T)=2581.333*T
                                                                              00007710
      INSTF(T)=2581.333*(1.0-T)
                                                                              00007720
                                                                              00007730
      CALL FILL (1,1,999,0.0)
                                                                              00007740
      D'. 30 J=2,999
                                                                              00007750
      T2=T2+DELTAT
                                                                              00007760
      T1=T2-0
         (T2.0E.0.0.AND.T2.LE.0.5) GO TO 10
                                                                              00007770
      IF
                                                                              00007780
         (T2.0E.0.5.AND.T2.LE.1.0) GO TO 20
      IF (T1.6T.1.0) I(J)=0.0
                                                                              00007790
      IF (T1.LE.0.0) I(J)=645.333/D
                                                                              00007800
      IF (T1.LE.0.0) GO TO 30
                                                                              00007810
      IF ((T1.GE.O.O).AND.(T1._E.O.5)) I(J)=(322.667+(((0.5-T1)*(1290.6600007820
                                                                              00007830
     17+INSTR(T1)))/2.0))/D
                                                                              00007840
      IF (T1.GE.O.O.AND.T1.LE.O.5) GO TO 30
      IF (T1.0E.0.5.AND.T1.LE.1.0) I(J)=((1.0-T1)*(INSTF(T1)))/(2.0*D)
                                                                              00007850
      GO TO 30
                                                                              00007860
                                                                              00007870
   10 IF (T1.LE.0.0) I(J)=INSTR(T2)+T2/(2.0+D)
                                                                              00007880
      IF (T1.LE.0.0) GO TO 30
                                                                              00007890
      IF (T1.LE.0.5) I(J)=(INSTR(T2)+INSTR(T1))*0.5
```

```
00007900
      30 TO 30
         (T1.LE.0.0) I(J)=(322.667+(T2-0.5)+(1290.667+INSTF(T2))+0.5)/D 00007910
   20 IF
                                                                           00007920
      IF (T1.LE.0.0) GO TO 30
      IF (T1.0E.0.0.AND.T1.LE.0.5) I(J)=((T2-0.5)+(1290.667+INSTF(T2))+(00007930
                                                                           00007940
     10.5-T1)*(1290.667+[NSTR(T1)))/(2.0*D)
                                                                           00007950
      IF (T1.0E.0.0.AND.T1.LE.0.5) GO TO 30
      IF (T1.0E.0.5) I(J)=(INSTF(T2)+INSTF(T1))*0.5
                                                                           00007950
                                                                           00007970
   30 CONTINUE
      RETURN
                                                                           00007980
      END:
                                                                           00007990
                                                                           00008000
      FUNCTION JNWYDY (JMON+JDAY+JYEAR)
                                                                           00008010
C
                                                                           00008020
C
      1 OCT 76
      COMPUTES A JULIAN DAY NUMBER ON A MATER YEAR BASIS
C
                                                                          00008030
      (OCTOBER FIRST = 1 AND SEPTEMBER 30 = 366).
                                                                           00008040
C
                                                                           00008050
C
                                                                           00008060
      COMMON /DAYSMO/ MODAYS(12)
                                                                           00008070
      IWTRYR=JYEAR
                                                                           00008080
      IF (JMON.GT.9) IWTRYR=IWTRYR+1
                                                                           00008090
      LEAP=0
      IF (MOD(IWTRYR+4).EQ.0) LEAP=1
                                                                           00008100
                                                                           00008110
      SC+YAGL=YGYWNL
                                                                           00008120
      IF (JMON.EQ.1) GO TO 20
                                                                           00008130
      405=JMON-1
                                                                           00008140
      00 10 I=1.40S
                                                                           00008150
   10 JN#YDY=JNWYDY+MODAYS(I)
   20 IF (JNWYDY.GT.365) JNWYDY=JNWYDY-(LEAP+365)
                                                                           00008160
                                                                           00008170
      IF (JMON.GT.2) JNWYDY=JNNYDY+LEAP
                                                                           00008180
      RETURN
                                                                           00008190
      END:
      SUBROUTINE NSTRXN (RATIO.IFILE1.IFILE2.MIN2.LAG)
                                                                           00008200
                                                                           00008210
C
                                                                           00008220
      1 OCT 76
C
      TRANSLATES THE INSTRUCTION CODED ON THE INSTRUCTION
¢
                                                                           00008230
      CARDS AND THE PARAMETERS CODED ON THE PARAMETER CARDS.
                                                                           00008240
C
                                                                           00008250
C
      IMPLICIT LOGICAL(Z) . INTEGER(A)
                                                                           00008260
      REAL K
                                                                           00008270
                                                                           00008280
      DIMENSION AREACH(20)
      COMMON /RTPARM/ AREACH.K.X.TT.W.CZERO.NURS.RI.UR(20.100).NRO.HWAY(00008290
                                                                           00008300
     120)
                                                                           00008310
      COMMON /UNITS/ LCARD.LPRNT
      COMMON /ZLOGIC/ ZOPER(20).ZDONE.ZBORT
                                                                           00008320
      COMMON /INSTCD/ ICARD(80),ICOL
                                                                           00008330
      COMMON /ALFWRD/ ARATIO(5), AROUTE(5), AADD(3), APLOT(4), APRINT(5), AQM00008340
                                                                           00008350
     IN(4) . ACOMPR(7) . ARSTRT(7) . ALAG(3)
                                                                           00008360
      COMMON /ALFCHS/ ANEQSN.APDINT.ACOMMA.AMINUS.APLUS.AQUEST
                                                                           00008370
      DATA ABLANK/1H /
                                                                           00008380
      DIMENSION ALPHA(16)
      DATA ALPHA/1HA+1HD+1HF+1HT+1HL+1HO+1HP+1HQ+1HS+1HM+1HR+1HC+1HK+1HT0000B390
     1.14W.1HX/
      EQUIVALENCE (ZK.ZOPER(20)), (ZCO.ZOPER(19)), (ZX.ZOPER(18)), (ZDIF00008410
                                                                           00008420
     1FA+ZOPER(6)) + (ZW+ZOPER(17)) + (ZMUL(T+ZOPER(15))
      4IVQ=1
                                                                           00008430
                                                                           00008440
      LAG=0
                                                                           00008450
      ICOL=1
                                                                           00008460
      ZBORT=.FALSE.
                                                                           00008470
      ZDONE = . FALSE .
                                                                           00008480
      O 10 I=1.20
      ZOPER(I) = . FALSE .
                                                                           00008490
   10 CONTINUE
                                                                           00008500
```

```
00008510
    30 TO 30
                                                                          00008520
20 CALL FIND (ACOMMA)
                                                                          00008530
    IF (ZDONE) RETURN
                                                                          00008540
 30 CALL SKIP
    20 40 I=1.12
                                                                          00008550
                                                                          00008560
    IGO=I
                                                                          00008570
    IF (ICARD(ICOL).EQ.ALPHA(I)) GO TO 50
                                                                          00008580
 40 CONTINUE
                                                                          00008590
    IG0=13
                                                                          00008600
 50 30 TO (80.100.110.110.120.140.90.150.130.180.60.160.190). IGO
                                                                          00008610
                                                                          00008620
               D
                        I
                                0
                                     P
                                        3.
                                            S
                                                 ₹' C
                                                        M INVALIO
                                                                          00008630
60 IF (ZOPER(1)) GO TO 70
                                                                          00008640
                                                                          00008650
    CALL TRNSLB (ARATIO,5,1)
    IF (.NOT.ZOPER(1)) GO TO 70
                                                                          00008660
                                                                          00008670
    CALL GETFLT (RATIO)
                                                                          00008680
    30 TO 20
                                                                          00008690
 70 CALL TRNSL8 (AROUTE,5,2)
    IF (.NOT.ZOPER(2)) GO TO 170
                                                                          00008700
                                                                          00008710
    30 TO 20
80 CALL TRNSLS (AADD, 3.3)
                                                                          00008720
                                                                          00008730
    IF (.NOT.ZOPER(3)) GO TO 190
                                                                          00008740
    30 TO 20
 90 CALL TRNSLB (APLOT,4,4)
                                                                          00008750
    IF (ZOPER(4)) GO TO 20
                                                                          00008760
                                                                          00008770
    CALL TRNSLS (APRINT,5,5)
    IF (.NOT.ZOPER(5)) GO TO 190
                                                                          00008780
                                                                          00008790
    30 TO 20
                                                                          0008800
100 ZOPER(6) = . TRUE .
    30 TD 20
                                                                          00008810
                                                                          00008820
110 CALL GETINT (IFILE1)
                                                                          00008830
    30 TO 20
                                                                          00008840
120 CALL TRNSLB (ALAG.3.16)
                                                                          00008850
    IF (.NOT.ZOPER(16)) GO TO: 190
                                                                          00008860
    CALL GETINT (LAG)
                                                                          00008870
    30 TO 20
                                                                          00008880
130 ZOPER(7) = . TRUE .
140 CALL GETINT (IFILES)
                                                                          00008890
                                                                          00008900
    GO TO 20
                                                                          00008910
150 CALL TRNSLB (AQMIN,4.8)
    IF (.NOT.ZOPER(8)) GO TO 190
                                                                          00008920
                                                                          00008930
    CALL GETINT (MINQ)
                                                                          00008940
    30 TO 20
                                                                          00008950
160 CALL TRNSLB (ACOMPR, 7,9)
                                                                          00008960
    IF (.NOT.ZOPER(9)) GO TO 190
                                                                          00008970
    GO TO 20
170 CALL TRNSLS (ARSTRT+7+10)
                                                                          00008980
                                                                          00008990
    IF (.NOT.ZOPER(10)) GO TO 190
    RETURN
                                                                          00009000
180 ZOPER(15) = . TRUE .
                                                                          00009010
                                                                          00009020
    30 TO 20
                                                                          00009030
190 CONTINUE
                                                                          00009040
200 ZBORT=.TRUE.
                                                                          00009050
    RETURN
                                                                          00009060
    ENTRY PARAM
    ZDONE - FALSE.
                                                                          00009070
                                                                          00009080
    ICOL=1
                                                                          00009090
    00.1=1.20
                                                                          00009100
    AREACH(I) = AQUEST
                                                                          00009110
210 CONTINUE
```

```
00009120
      TT=0.
      w=0.
                                                                             00009130
                                                                             00009140
      K=0.
                                                                             00009150
      <=1.0
      cZERO=0.
                                                                             00009160
                                                                             00009170
      30 TO 230
                                                                             00009190
  220 CALL FIND (ACOMMA)
      IF (ZDONE) GO TO 360
                                                                             00009190
                                                                             00009200
  230 CALL SKIP
      IF (ZDONE) GO TO 360
                                                                             00009210
                                                                             00009220
      00 240 I=11.16
                                                                             00009230
      IGD=I-10
                                                                             00009240
      IF (ICARD(ICOL).EQ.ALPHA(I)) GO TO 250
                                                                             00009250
  240 CONTINUE
                                                                             00009260
      IGD=7
                                                                             00009270
  250 30 TO (260,310,320,330,340,350,200), IGO
                                                                             00009280
C
                                                                             00009290
C
                   С
                       K
                         τ
                                    X ERROR
                                                                             00009300
C
  260 CALL FIND (ANEQSN)
                                                                             00009310
                                                                             00009320
      CALL SKIP
      IF (ZDONE) GO TO 360
                                                                             00009330
                                                                             00009340
      JCOL=ICOL
                                                                             00009350
      CALL FIND (ACOMMA)
                                                                             00009360
      IF (ZDONE) GO TO 270
                                                                             00009370
      <COL=ICOL-2
                                                                             00009380
      30 TO 280
                                                                             00009390
  270 <COL=JCOL+19
  280 IF (<COL.GT.80) <COL=80
                                                                             00009400
                                                                             00009410
      J = 0
      DO 290 I=JCOL, KCOL
                                                                             00009420
      J=J+1
                                                                             00009430
                                                                             00009440
      AREACH(J)=ICARD(I)
  290 CONTINUE
                                                                             00009450
                                                                             00009460
      ICOL=KCOL+1
                                                                             00009470
      IF (J.EQ.20) GO TO 220
                                                                             00009480
      J=J+1
      05 £ C=8L 00E 0C
                                                                             00009490
                                                                             00009500
      AREACH (JB) = ABLANK
  300 CONTINUE
                                                                             00009510
      30 TO 220
                                                                             00009520
  310 IF (.NOT.ZDIFFA) GO TO 200
                                                                             00009530
      IF (ZMULT) RETURN
                                                                             00009540
      CALL GETFLT (CZERO)
                                                                             00009550
                                                                             00009560
      ZCD=.TRUE.
                                                                             00009570
      GO TO 220
  320 CALL GETFLT (K)
                                                                             00009580
                                                                             00009590
      ZK=.TRUE.
      GO TO 220
                                                                             00009600
  330 CALL GETFLT (TT)
                                                                             00009610
                                                                             00009620
      GO TO 220
                                                                             00009630
  340 CALL GETFLT (W)
                                                                             00009640
      ZW=.TRUE.
                                                                             00009650
      30 TO 220
  350 CALL GETFLT (X)
                                                                             00009660
      ZX=.TRUE.
                                                                             00009670
                                                                             00009680
      30 TO 220
  360 IF (ZDIRFA) 30 TO 380
                                                                             00009690
      IF (ZK) GO TO 370
                                                                             00009700
                                                                             00009710
      WRITE (LPRNT+390)
                                                                             00009720
      GO TO 200
```

```
00009730
  370 IF (.NOT.ZW) W=K
                                                                            00009740
      RETURN
                                                                            00009750
  380 IF (ZMULT) RETURN-
                                                                            00009760
      IF (ZCO.AND.ZX.AND.ZK) RETURN
                                                                            00009770
      WRITE (LPRNT,400)
GO TO 200
                                                                            00009780
                                                                            00009790
C
                                                                            00009800
  390 FORMAT (16HOK NOT SPECIFIED)
                                                                            00009810
  400 FORMAT (3040K OR X OR CZERO NOT SPECIFIED)
                                                                            00009820
      יכאם
                                                                            00009830
      SUBROUTINE PLOTIT (ZFILE2, ZEND, ZBEGIN, MINQ)
                                                                            00009840
C
                                                                            00009850
C
      SETS UP THE DATA FOR SUBSEQUENT PLOTTING BY PRPLOT.
                                                                            00009860
C
                                                                            00009870
С
                                                                            00009880
      DIMENSION INFO(20), MINGA(5)
                                                                            00009890
      INTEGER STANO1(2), STANO2(2), STANM1(12), STANM2(12)
                                                                            00009900
      LOGICAL ZBEGIN.ZEND.ZFILER
                                                                            00009910
      LOGICAL+1 GRID(44407)
      DIMENSION 21(384), Q2(484), 21LOG(366), Q2LOG(366), XI(366), NSCAL00009920
                                                                            00000930
     TE(5)
                                                                            00009940
      COMMON /IQVALU/ IQF.IQL
      COMMON /DISCHG/ Q1.Q2
                                                                            00009950
      COMMON /PLT/ INFO, INITHO, INITDY, INITYR, LASTMO, LASTDY, LASTYR, STANO100009960
                                                                            00009970
     1.STANM1.STANO2.STANM2
      COMMON /UNITS/ LCARD+LPRNT
                                                                            000099R0
      DATA NSOALE/1,0,0,0,0/
                                                                            00009990
                                                                            00010000
                                                                            00010010
C
      IF (.NOT.ZBEGIN) GO TO 50
                                                                            00010020
                                                                            00010030
      XMIN=0.0
                                                                            00010040
      MINLO=1
                                                                            00010050
      IF (MINQ.LT.MINLO) GO TO 20
      DO 10 J=1.3
                                                                            00010060
                                                                            00010070
      L**01=IHVIP
                                                                            00010080
      IF (MINQ.GE.MINLO.AND.MINQ.LT.MINHI) GO TO 20
                                                                            00010090
      XMIN=XMIN+1.0
      MINLO=MINHI
                                                                            00010100
                                                                            00010110
   10 CONTINUE
   20 MING=HINLO
                                                                            00010120
      XMAX=XMIN+4.0
                                                                            00010130
                                                                            00010140
       0 30 J=1.5
                                                                            00010150
      (1-U)+01+9NIM=(U)ABVIP
                                                                            00010160
   30 CONTINUE
      WRITE (LPRNT.90) INFO.INITHO.INITDY.INITYR.LASTMO.LASTDY.LASTYR
                                                                            00010170
      WRITE (LPRAT, 100) STANO1, STANM1
                                                                            00010180
                                                                            00010190
      IF (.NOT.ZFILE2) GO TO 40
                                                                            00010200
      WRITE (LPRNT, 110) STANOZ, STANM2
   40 WRITE (LPRNT+120)
                                                                            00010210
                                                                            00010220
      WRITE (LPRNT.130) MINGA
                                                                            00010230
   50 CONTINUE
      DO 60 I=IQF | IQL
                                                                            00010240
      xI(I) = IQL - I + IQF
                                                                            00010250
                                                                            00010260
      IF (Q1(I).LE.0.0) Q1(I) =0.001
                                                                            00010270
      Q1LOG(I) = ALOG10(Q1(I))
                                                                            00010280
         (.NOT.ZFILE2) GO TO 60
      IF (Q2(1).LE.0.0) Q2(1)=0.001
                                                                            00010290
                                                                            00010300
      22L0G(I) = AL0G10(22(I))
                                                                            00010310
   60 CONTINUE
                                                                            00010320
      VPTS=IQL-IQF+1
                                                                            00010330
      NLINES=NPTS
```

```
00010340
      IF (ZBEGIN) NLINES=NLINES-1
                                                                           00010350
      XQ1=IQF
                                                                           00010360
      xQS=IQL
      CALL PLOTI (NSCALE NLINES . 1 . 4 . 30)
                                                                           00010370
                                                                           00010380
      CALL PLOT2 (GRID.XMAX.XMIN.XQ2.XQ1.6)
      CALL PLOTS (1H*+Q1LOG(1QF)+XI(1QF)+NPTS)
                                                                           00010390
      IF (ZFILE2) CALL PLOTS (140.02LOG(IQF).XI(IQF).NPTS)
                                                                           00010400
                                                                           00010410
      IF (ZEND) GO TO 70
                                                                           00010420
      CALL OMIT (7)
      30 TO 80
                                                                           00010430
   70 CALL OMIT (3)
                                                                           00010440
   80 CALL PLOT4 (5.5H DATE)
                                                                           00010450
                                                                           00010460
      IF (.NOT.ZEND) RETURN
                                                                           00010470
      WRITE (LPRNT.130) MINGA
      ARITE (LPRNT-120)
                                                                           00010490
                                                                           00010490
      RETURN
                                                                           00010500
C
                                                                           00010510
C
                                                                           00010520
C
                                                                           00010530
   90 FORMAT (1H1//11X+20A4/11X+4HFROM+213+15+3H T0+213+15)
                                                                           00010540
  100 FORMAT (16x.25H+ = DISCHARGE AT STATION .2A4.2H+ .12A4)
                                                                         . 00010550
  110 FORMAT (16x.25H0 = DISCHARGE AT STATION .244.2H. +1244)
                                                                           00010560
  120 FORMAT (//55X.13HDISCHARGE.CFS)
                                                                           00010570
  130 FORMAT (9X.13.4(23x.17))
                                                                           00010580
      END.
                                                                           00010590
      SUBROUTINE PRNT (ZBEGIN.ZFILEZ)
                                                                           00010600
C
                                                                           00010610
C
      1 OCT 76
                                                                           00010620
                                                                           00010630
C
      PROVIDES A PRINTOUT OF ONE OR TWO HYDROGRAPHS.
                                                                           00010640
                                                                           00010650
      LOGICAL ZBEGIN.ZEND.ZFILER
      DIMENSION INFO(20)
                                                                           00010660
      DIMENSION Q1 (384) + Q2(484)
                                                                           00010670
      INTEGER STANO1 (2) .STANO2 (2) .STANM1 (12) .STANM2 (12)
                                                                           00010680
      COMMON /DISCHG/ Q1.Q2
                                                                           00010690
                                                                           00010700
      COMMON /IQVALU/ IQF . IQL
      COMMON /PLT/ INFO.INITMO.INITDY.INITYR.LASTMD.LASTDY.LASTYR.STAN0100010710
     SMMATE.SCHATE.IMMATE.
                                                                           00010720
      ~OMMON /82/ IYEAR(384),IDAY(384),IMON(384),TIME(384)
                                                                           00010730
                                                                           00010740
      COMMON /UNITS/ LCARD+LPRNT
                                                                            00010750
C
                                                                           00010760
C
                                                                           00010770
      IF (ZFILE2) GO TO 40
      IF (.NOT.ZBEGIN) GO TO 10
                                                                            00010780
      ICNT=0
                                                                           00010790
      FRITE (LPRNT.80) INFO.INITMO.INITDY.INITYR.LASTMO.LASTDY.LASTYR
                                                                           00010800
      WRITE (LPRNT.140) STANOL.STANHI
                                                                            00010810
      WRITE (LPRNT, 120)
                                                                            00010820
                                                                            00010830
C
                                                                            00010840
   10 00 30 J=IQF.IQL
      IF (ICNT.LT.45) GO TO 20
                                                                            00010850
                                                                            00010860
      WRITE (LPRNT.130)
      WRITE (LPRNT, 120)
                                                                            00010870
                                                                            00010880
      ICNT=0
   20 WRITE (LPRNT.150) (IMON(J).IDAY(J).IYEAR(J).TIME(J).01(J))
                                                                           00010890
                                                                            00010900
      ICNT=ICNT+1
                                                                           00010910
   30 CONTINUE
                                                                            00010920
С
                                                                            00010930
      RETURN
                                                                            00010940
С
```

```
00010950
C
                                                                           0.0010960
   40 IF (.NOT.ZBEGIN) GO TO 50
                                                                           00010970
      ICNT=0
      # ITE (LPRYT.80) INFO.INITMO.INITDY.INITYR.LASTMO.LASTDY.LASTYR
                                                                           00010980
      WRITE (LPRNT.90) STANO1.STANVI.STANV2.STANV2
                                                                           00010990
      WRITE (LPRNT-110)
                                                                           00011000
                                                                           00011010
   50 00 70 J=IQF+IQL
                                                                           00011020
      IF (ICNT.LT.45) GO TO 60
      WRITE (LPRNT.130)
#RITE (LPRNT.110)
                                                                           00011030
                                                                           00011040
      ICNT=0
                                                                           00011050
   60 WRITE (LPRNT.100) (IMON(J).IDAY(J).IYEAR(J).TIME(J).21(J).22(J))
                                                                           00011060
                                                                            00011070
      ICYT=ICHT+1
   70 CONTINUE
                                                                           00011080
                                                                           00011090
C
      RETURN
                                                                           00011100
                                                                            00011110
С
                                                                           00011120
С
                                                                           00011130
C
                                                                            00011140
C
   80 FORMAT (1H1//11X.20A4/11X.4HFROM.213.15.3H TO.213.15)
                                                                           00011150
   90 FORMAT (16x, 27HQ1 IS DISCHARGE AT STATION .2A4.24. .12A4/16X.27HQ200011160
     I IS DISCHARGE AT STATION . 2A4.2H. . 12A4)
                                                                            00011170
                                                                            00011180
  100 FORMAT (11x,213,15,F10.2,2F10.1)
  110_FORMAT (//15x,4HDATE,9x,4HTIME,7x,2HQ1,8x,2HQ2/37x,2(5H(CFS),5X)//00011190
                                                                           00011200
  120 FORMAT (//15X,4HDATE,9X,4HTIME,7X,2HQ1/37X,5H(CFS)//)
                                                                            00011210
  130 FORMAT (1H1//)
                                                                            00011220
  140 FORMAT (16x.27HQ1 IS DISCHARGE AT STATION .2A4.24. .12A4)
                                                                            00011230
                                                                            00011240
  150 FORMAT (11x,213,15,F10.2,F10.1)
                                                                            00011250
      ENDI
                                                                            00011260
      SUBROUTINE PRPLOT
                                                                            00011270
C
      1 OCT 76
                                                                            00011280
C
      PRODUCES THE PRINTER PLOT OF ONE OR TWO HYDROGRAPHS.
                                                                            00011290
C.
                                                                            00011300
C
                                                                            00011310
      IMPLICIT' LOGICAL*1(W) .LOGICAL#1(K)
      DIMENSION NSCALE(5), ABNOS(26), X(1), Y(1)
                                                                            00011320
      LOGICAL#1 NOS(10)/10','1','2','3','4','5','6','7','8','9'/
                                                                            00011330
      LOGICAL+1 IMAGE(1), CH, LABEL(1), ERR1, ERR3, ERR5
                                                                            00011340
                                                                            00011350
      LOGICAL+1 VC.HC.FOR1(19).FOR2(15).FOR3(19).NC.BL.HF.HF1
      REAL+8 FOX1(3)+F0X2(2)+F0X3(3)
                                                                            00011360
                                                                            00011370
      INTEGER+2 VCR
      EQUIVALENCE (FOR1.FOX1). (FOR2.FOX2). (FOR3.FOX3). (VC.VCR)
                                                                            00011380
                                                                            00011390
      INTEGER FILE
      DATA HC/!-!/.NC/!+!/.BL/! !/.HF/!F!/.HF1/!.!/
                                                                            00011400
                                                 1/ .
      DATA FOX1/'(1XA1.F9','.2, 121'.'A1)
                                                                            00011410
      DATA FOX2/ (1XA1, 9 , 1X121A1) 1/
                                                                            00011420
                                                 • /
                                                                            00011430
      DATA FOX3/ (1HOF
                        ... Fi ', '...
      DATA VCR/Z4F00/
                                                                            00011440
      DATA KPLOT1/.FALSE./.KPLDT2/.FALSE./
                                                                            00011450
                                                                            00011460
      DATA KABSC.KORD.KBOTGL/3+.FALSE./
                                                                            00011470
C
                                                                            00011480
      ENTRY PLOTI (NSCALE . NHL . NSBH . NVL . NSBV)
      IFL#FILE
                                                                            00011490
                                                                            00011500
      ERR1=.FALSE.
      ERR3=.FALSE.
                                                                            00011510
                                                                            00011520
      ERRS=.FALSE.
      <PLOT1=.TRUE.
                                                                            00011530
      KPLOTZ=.FALSE.
                                                                            00011540
                                                                            00011550
      NH=IABS(NHL)
```

```
00011560
   VSH# [ABS (NSBH)
                                                                           00011570
   NV=IABS(NVL)
                                                                           00011580
   NSV=[ABS(NSBV)
                                                                           00011590
   NSCL=NSCALE(1)
                                                                           00011600
   IF (NH+NSH+NV+NSV.NE.0) 30 TO-10
                                                                           00011610
   KPLOT=.FALSE.
                                                                           00011620
   ERR1 = . TRUE .
                                                                           00011630
   RETURN
                                                                           00011640
10 KPLOT=.TRUE'.
                                                                           00011650
   IF (NV.LE.25) GO TO 20
                                                                           00011660
   KPLOT=. KALSE.
                                                                           00011670
   ERR3=.TRUE.
                                                                           00011680
   RETURN
                                                                           00011690
20 CONTINUE
                                                                           00011700
   1-44=44
                                                                           00011710
   4V2=4V+1
                                                                           00011720
   H2M+HM=FQV
                                                                           00011730
   VDHP=NDH+1
                                                                           00011740
   NDV=NV+NSV
                                                                           00011750
   4DVP=NDV+1
                                                                           00011760
   VI 4G= (NBHP+NDVP)
                                                                           00011770
   IF (NDV.LE.120) GO TO 30
                                                                           00011790
   <PLDT=.FALSE.
                                                                           00011790
   ERRS=.TRUE.
                                                                           00011800
   RETURN
                                                                           00011810
30 CONTINUE
                                                                           00011820
   IF (NSCL.EQ.0) GO TO 40
                                                                           00011830
   FSY=10. **NSCALE(2)
                                                                           00011840
   FSX=10. **NSCALE(4)
   IY=NINO(IABS(NSCALE(3))+7)+1
                                                                           00011850
                                                                           00011860
   IX=MINO(IABS(NSCALE(5)).9)+1
                                                                           00011870
   30 TD 50
                                                                           00011880
40 FSY=1.
                                                                           00011890
   FSX=1.
                                                                           00011900
   IY=4
                                                                           08011910
   IX=4
                                                                           00011920
50 FOR4 (10) = NOS (IY)
                                                                           00011930
   MA=MINO(IX+NSV)-1
                                                                           00011940
   NS=NA-MINO(NA+120-NDV)
                                                                           00011950
   48=11-NS+NA
                                                                           00011960
   11=NB/10.
                                                                           00011970
   I2=N8-I1-10
                                                                           00011980
   FOR3(6)=NOS(11+1)
                                                                           00011990
   FOR3 (7) =NOS (12+1)
                                                                           00012000
   FOR3 (9) = NOS (NA+1)
                                                                           00012010
   IF (NV.GT.0) GO TD 70
                                                                           00012020
   00 60 J=11,18
                                                                           00012030
60 FOR3(J)=8L
                                                                           00012040
   30 TO 80
                                                                           00012050
70 [1=NV/10
                                                                           00012060
   12=NV-11+10
                                                                           00012070
   FOR3(11)=NOS(I1+1)
                                                                           00012080
   FOR3(12)=NOS(12+1)
                                                                           00012090
   FORB (13) =HF
                                                                           00012100
   [1=NSV/100
                                                                           00012110
   13=NSV-#1+100
                                                                           00012120
   [2=13/10
                                                                           00012130
   I3=I3-I2*10
                                                                           00012140
   FOR3 (14) = NOS (11+1)
                                                                           00012150
   FOR3 (15) =NOS (12+1)
                                                                           00012160
   FOR3(16) = NOS(13+1)
```

```
00012170
      F033(17)=HF1
                                                                              00012180
      FORG(18)=FOR3(9)
                                                                              00012190
   80 IF (KPLOT1) RETURN
                                                                              00012200
      KPLDT1 = . TRUE .
                                                                              00012210
C
                                                                              00012220
      ENTRY PLOTS (IMAGE. XMAX. X MIN. YMAX. YMIN. FILE)
                                                                              00012230
      IFLFILE
                                                                              00012240
      KPLDT2=.TRUE.
                                                                              00012250
      IF (KPLOT1) 30 TO 90
                                                                              00012260
      VSCL=0
                                                                              00012270
      '1H=5
                                                                              00012280
      454=10
                                                                              00012290
      4V=10
                                                                              00012300
      VSV=10
                                                                              00012310
      50 TO 10
                                                                              00012320
   90 CONTINUE
                                                                              00012330
      IF (KPLOT) GO TO 100
                                                                              00012340
      IF (ERR1) WRITE (IFL.300)
IF (ERR3) WRITE (IFL.310)
                                                                              00012350
                                                                              00012360
      IF (ERRS) WRITE (IFL, 320)
                                                                              00012370
      RETURN
                                                                              00012390
  100 YMX=YMAX
                                                                              00012390
      DH=(YMAX-YMIN)/FLOAT(NDH)
                                                                              00012400
      (VON) TAOJA (VIPX-XAMX) = VC
                                                                              00012410
      90 110 I=1.NVP
                                                                              00012420
  110 ABNOS(I) = (XMIN+FLOAT((I-1) *NSV) *DV) *FSX
                                                                              00012430
      DMIN, 1=1, NIMG
                                                                              00012440
  120 IMAGE(I)=BL
                                                                              00012450
      DO 160 I=1.NOHP
                                                                              00012460
      I2=I+NOVP
                                                                              00012470
      I1=I2-NDV
                                                                              00012480
      KNHOR=MOD(I-1,NSH).NE.0
                                                                              00012490
      IF (KNHOR) GO TO 140
                                                                              00012500
      00 130 J=I1.I2
                                                                              00012510
  130 IMAGE(J) =HC-
                                                                              00012520
  140 CONTINUE
                                                                              00012530
      DO 160 J=I1.I2.NSV
                                                                              00012540
      IF (KNHOR) GO TO 150
                                                                              00012550
      IMAGE (J) =NC
                                                                              00012560
      GO TO 160
                                                                              00012570
  150 IMAGE(J)=VC
                                                                              00012580
  160 CONTINUE
                                                                              00012590
      XMIN1=XMIN-DV/2.
                                                                              00012600
       YMIN1=YMIN-DH/2.
                                                                              00012610
      RETURN
                                                                              00012620
С
                                                                               00012630
      ENTRY PLOT3 (CH+X+Y+N3)
                                                                              00012640
      IF (KPLOT2) GO TO 180
                                                                               00012650
  170 WRITE (IFL, 330)
                                                                              00012660
  180 CONTINUE
                                                                              00012670
      IF (.NOT.KPLOT) RETURN
                                                                              00012690
       IF (N3.6T.D) GO TO 190
                                                                              00012690
      KPLDT=.FALSE.
                                                                              00012700
      WRITE (IFL,340)
                                                                               00012710
       RETURN
  190 DO 260 I=1.N3
                                                                              00012720
                                                                               00012730
      IF (OV) 210,200,210
                                                                               00012740
  0=1MUC 005
                                                                               00012750
      GO TO 220
                                                                               00012760
  210 CONTINUE
                                                                               00012770
      DUM1 = (X(I) - XMIN1) / DV
```

```
00012780
   220 IF (DH) 240,230,240
   0=SPUC 0ES
                                                                               00012790
                                                                               00012800
       30 TO 250
                                                                               00012810
   240 CONTINUE
                                                                               00012820
       HC/(INIPY-(I)Y)=9PUG
                                                                               00012830
   250 CONTINUE
                                                                               00012840
       IF (DUM1.LT.0..OR.DUM2.LT.0.) GO TO 260
                                                                               00012850
       IF (DUM1.GE.NDVP.OR.DUM2.GE.NDHP) 30 TO 260
                                                                               00012860
       VX=1+INT(DUM1)
                                                                               00012870
       Y=1+INT (DUM2)
       J=(NDHP-NY) #YDVP+NX
                                                                               00012880
                                                                               00012890
       I AGE(J)=CH
                                                                               00012900
   260 CONTINUE
       RETURN
                                                                               00012910
                                                                               00012920
 С
                                                                               00012930
       ENTRY PLOT4 (NL, LABEL)
       ENTRY FPLOT4 (NL.LABEL)
                                                                               00012940
                                                                               00012950
       IF (.NOT.KPLOT) RETURN
                                                                               00012960
       IF (.NOT.KPLOT2) GO TO 170
                                                                               00012970
       9HOM . 1=1 . NOHP
                                                                               00012990
       IF (I.EQ.NDHP.AND.KBOTGL) GO TD 280
                                                                               00012990
       WL=BL
                                                                               00013000
       IF (I.LE.NLD WL=LABEL(I)
                                                                               00013010
       AVON*I=SI
       11=12-NBV
                                                                               00013020
       IF (MOD(I-1,NSH).EQ.O.AND..NOT.KORD) GO TO 270
                                                                               00013030
       #RITE (IFL.FOR2) WL. (IMAGE(J).J=I1.I2)
                                                                               00013040
       GO TO 280
                                                                               00013050
                                                                               00013060
   270 CONTINUE
                                                                              _00013070
       ORDNO=(YMX-FLOAT(I-1) +DH) +FSY
                                                                               00013080
       IF (I.EQ.NOHP) ORDNO=YMIN
       WRITE (IFL.FOR1) WL4ORDNO4(IMAGE(J).J=I1.I2)
                                                                               00013090
                                                                               00013100
   280 CONTINUE
                                                                               00013110
       1F (KABSC) GO TO 290
       WRITE (IFL.FOR3) (ABNOS(J).J=1.NVP)
                                                                               00013120
   290 RETURN
                                                                               00013130
                                                                               00013140
. C
       ENTRY OMIT(LSW)
                                                                               00013150
                                                                               00013160
       <ABSC=MOD(LSW.2).EQ.1
                                                                               00013170
       KORD=MOB(LSW+4).GE.2
       KBOTGL=LSW.GE.4
                                                                               00013180
                                                                               00013190
       RETURN
                                                                               00013200
   300 FORMAT (T5. SOME PLOTI ARG. ILLEGALLY 0')
                                                                               00013210
   310 FORMAT (T5.*NO. OF VERTICALILINES >25*)
320 FORMAT (T5.*WIDTH OF GRAPH >121*)
                                                                               00013220
                                                                               00013230
   330 FORMAT (TS, PLOT2 MUST BEI CALLED!)
                                                                               00013240
                                                                               00013250
   340 FORMAT (T5. PLOT3. ARG2 < 01)
       FNO
                                                                               00013260
       SUBROUTINE QINPUT (IFILE, IAVI, ITEMS, Q, JYEAR, JMON, JDAY)
                                                                               00013270
                                                                               00013280
 C
                                                                               00013290
       1 OCT 76
 C
       READS AND WRITES DATA RECORDS ON DIRECT ACCESS DEVICE.
                                                                               00013300
 C
                                                                               00013310
 C
                                                                               00013320
       DIMENSION Q(384) . ISKIP(4)
       READ (IFILE ! IAVI) JMON.JORY.JYEAR.ITEMS. (Q(I).I=1.ITEMS)
                                                                               00013330
       IAVE=IAVI+1
                                                                               00013340
                                                                               00013350
       RETURN
       ENTRY QOUTPT (IFILE, IAVO, ITEMS, Q, JMON, JDAY, JYEAR)
                                                                               00013360
       WRITE (IFILE IAVO) JMON. JOAY. JYEAR. ITEMS. (2(I). I=1. ITEMS)
                                                                               00013370
                                                                               00013380
       IAVO=IAVO+1
```

```
00013390
      RETURN
                                                                           00013400
C
                                                                           00013410
      ENTRY QINFEW(NUMBR.Q)
                                                                           00013420
      Il=ITE4S+1
      IZ=ITEMS+NUMBR
                                                                           00013430
      READ (IRILE ! IAVI) ISKIP . (Q(I) . I= I1 . I2)
                                                                           00013440
                                                                           00013450
C
                                                                           00013460
      RETURN
                                                                           00013470
      END:
                                                                            00013480
      SUBROUTINE SETUP (NRECDS)
                                                                            00013490
C
                                                                           00013500
      1 OCT 76
C
      CREATES SPACE ON DIRECT ACCESS FILES.
                                                                            00013510
C.
                                                                           00013520
C
      COMMON /FILES/ 1021,1022,1023,1024,1025,1026,1027,1028,1029,1030
                                                                           00013530
      COMMON JUNITS/ LCARD.LPRNT
                                                                            00013540
                                                                            00013550
C
                                                                           00013560
         CREATE SPACE ON DIRECT ACCESS FILES AS FOLLOWS:
C
             1) REQUESTED SPACEI (NRECDS) ON OUTPUT FILES (26-38)
                                                                            00013570
C
                                                                           00013580
C
             2) 100 RECORDS ON INPUT FILES (21-25)
                                                                           00013590
C
                                                                            00013600
      00 10 I=1.5
                                                                            00013610
      IGO=I
      IF ((NRECDS-20*I).LE.0) 30 TO 20
                                                                            00013620
   10 CONTINUE
                                                                            00013630
                                                                            00013640
      IGD#5
                                                                            00013650
   20 30 TO (30,40,50,60,70), IGO
C
                                                                            00013660
   30 CONTINUE
                                                                            00013670
C
                                                                           00013680
C
      I GREATE SPACE FOR 20 RECORDS FOR OUTPUT FILES
                                                                            00013690
                                                                            00013700
C
      DEFINE FILE 26(20,1552,L.ID26).27(20,1552,LhID27).28(20,1552,L,ID200013710
     $9),29(20,1552,L,ID29),30(20,1552,L,ID30)
                                                                            00013720
                                                                            00013730
      30 TO 80
                                                                            00013740
C
   40 CONTINUE
                                                                            00013750
                                                                            00013760
C
      I CREATE SPACE FOR 40 RECORDS FOR OUTPUT FILES
                                                                            00013770
C
                                                                            00013780
C
      DEFINE RILE 26(40,1552-L-1D26),27(40,1552-L-1D27),28(40,1552-L-1D200013790
     $8),29(40,1552,L,ID29),30(40,1552,L,ID30)
      30 TO 80
                                                                            00013810
                                                                            00013820
C
                                                                            00013830
   50 CONTINUE
C
                                                                           00013840
         CREATE SPACE FOR 60 RECORDS FOR OUTPUT FILES
                                                                            00013850
C
                                                                    ---+
                                                                            00013860
C
      DEFINE BILE 26(60,1552.L., ID26),27(60,1552.L., ID27),28(60,1552.L., ID200013870
     $8),29(60,1552,L,ID29),30(60,1552,L,ID30)
      30 TO 80
                                                                            00013890
                                                                            00013900
C
                                                                            00013910
   60 CONTINUE
C
                                                                            00013920
       EREATE SPACE FOR 80 RECORDS FOR OUTPUT FILES
                                                                        1
                                                                            00013930
С
C
                                                                            00013940
      DEFINE FILE: 26(80,1552,L,ID26),27(80,1552,L,ID27),28(80,1552,L,ID200013950
                                                                            00013960
     19),29(80,1552,L,ID29),30(80,1552,L,ID30)
                                                                            00013970
      GO TO 80
                                                                            00013980
С
                                                                            00013990
   70 CONTINUE
```

```
00014000
C
      1 GREATE SPACE FOR 100 RECORDS FOR OUTPUT FILES
                                                                       1
                                                                           00014010
C
                                                                           00014020
C
      DEFINE FILE 26(100,1552.LL.ID26).27(100,1552.LL.ID27).28(100,1552.L.00014030
     *ID28) .29(100,1552.L.ID29),30(100,1552.L.ID30)
                                                                           00014050
C
                                                                           00014060
   80 NRECDS=20+IGO
      #RITE (LPRNT.90) NRECOS
                                                                           08014070
                                                                          00014080
C
      I CREATE SPACE FOR 100 RECORDS FOR INPUT FILES
                                                                           00014090
C
                                                                    ___+
                                                                           00014100
      DEFINE FILE 21(100.1552.LhID21).22(100.1552.LhID22).23(100.1552.L.00014110
     $[D23),24(100,1552,L,1D24),25(100,1552,L+ID25)
                                                                           00014120
                                                                           00014130
                                                                           00014140
C
   90 FORMAT (11x.9HSPACE FOR, 14.50H RECORDS HAS BEEN ALLOCATED FOR OUTPO0014150
     IJT HYDROGRAPHS)
                                                                           00014170
                                                                           00014180
      SUBROUTINE TABL (X1.Y1.X.Y.I1.NQ)
                                                                           00014190
C
                                                                           00014200
      1 OCT 76
                                                                           00014210
C
      THIS IS A LEVEAR INTERPOLATION ROUTINE CALLED WHEN
                                                                           00014220
C
      USING MULTIPLE LINEARIZATION. USED: TO COMPUTE
                                                                           00014230
C
      DISCHARGE. CELERITY AND DISPERSION VALUES.
                                                                           00014240
C
                                                                           00014250
                                                                           00014260
C
      4001FIEB 2/14/80 & 3/07/90 BY J.M.3.AND J.3.S. TO-
                                                                           00014270
C
      BETTER MANDLE REVERSALS IN Q VS. C RELATION.
                                                                           00014290
C
      DIMENSION X(1) . Y(1)
                                                                           00014290
                                                                           00014300
      IF (X1.LT.X(1)) SO TO 40
      DO 10 I=I1.9
                                                                           00014310
      I=9v
                                                                           00014320
                                                                           00014330
      IF (X1.6E.X(I).AND.X1.LT.X(I+1)) GO' TO ZO
      IF (X1.LE.X(I).AND.X1.GT.X(I+1)) GO TO 20
                                                                           00014340
   10 CONTINUE
                                                                           00014350
                                                                           00014360
      4Q=9
   20 Y1=Y(NQ)+(((Y(NQ+1)-Y(NQ))/(X(NQ+1)-X(NQ)))*(X1-X(NQ)))
                                                                           00014370
                                                                           00014380
      4-TURN
                                                                           00014390
   40 WRITE (6,50)
      STOP
                                                                           00014400
                                                                           09014410
C
                                                                           00014420
   50 FORMAT (1H .30HVARIABLE DUT OF RANGE OF TABLE)
                                                                           00014430
                                                                           00014440
      SUBROUTINE TRNSLB (ARRAY NCHAR . ILOS)
                                                                           00014450
      1 OCT 76
                                                                           00014460
C
      CHECKS FOR PROPER INSTRUCTIONS ON THE INSTRUCTION CARD.
                                                                           00014470
C
                                                                           00014480
                                                                           00014490
      IMPLICIT LOGICAL (Z) . INTEGER (A)
      INTEGER BLANK/ 1/
                                                                           00014500
      COMMON /INSTCD/ ICARD(80).ICOL
                                                                           00014510
      COMMON /ZLOGIC/ ZOPER(20).ZDONE
                                                                           00014520
                                                                           00014530
      DIMENSION ARRAY(1)
                                                                           00014540
      DO 10 I=1.NCHAR
      KOLFICOL+I-1
                                                                           00014550
      IF (KOL.GT.80) GO TO 50
                                                                           00014560
      IF (ICARD(KOL) .NE.ARRAY(I)) RETURN
                                                                           00014570
   10 CONTINUE
                                                                           00014580
      ICOL=KOL+1
                                                                           00014590
                                                                           00014600
      ZOPER (ILOG) = . TRUE.
```

```
00014610
      RETURN
                                                                           00014620
      ENTRY SKIP
                                                                           00014630
      IF (ZDONE) RETURN
   20 IF (ICARD(ICOL).NE.BLANK) RETURN
                                                                           00014640
      ICOL=ICOL+1
                                                                           00014650
                                                                           00014660
      IF (ICOL.GT.80) GO TO 50
      GO TO 20
                                                                           00014670
      ENTRY FIND (ICHAR)
                                                                           00014680
   30 IF (ICARD(ICOL).EO.ICHAR) GO TO 40
                                                                           00014690
      ICOL=ICOL+1
                                                                           00014700
                                                                           00014710
      IF (ICOL.GT.80) GO TO 50
      30 0 30
                                                                           00014720
   40 ICOL=ICOL+1
                                                                           00014730
                                                                           00014740
      IF (ICOL.GT.80) GO TO 50
                                                                           00014750
      RETURN
   50 ZDONE=.TRUE.
                                                                           00014760
                                                                           00014770
      RETURN
                                                                           00014780
      FNO
      SUBROUTINE UNRESP (ZDIFF4.ZMULT.NRESP.ITT)
                                                                           00014790
                                                                           00014800
                                                                           00014810
      1 OCT 76
C
      THIS SUBROUTINE CALCULATES UNIT RESPONSE FUNCTIONS
                                                                           00014820
      FOR EITHER THE STORAGE CONTINUITY METHOD OR DIFFUSION
                                                                           00014830
      ANALOGY METHOD. FOR THE DIFFUSION ANALOGY METHOD.
                                                                           00014840
      UNIT-RESPONSE FUNCTIONS MAY BE CALCULATED FOR EITHER
                                                                           00014850
      SINGLE LINEARIZATION (ONE UNIT-RESPONSE OR
                                                                           00014860
      WILLTIPLE LINEARIZATION (FAMILY OF JNIT-RESPONSES).
                                                                           00014870
C
                                                                           00014880
      REVISED 6/22/78 BY J.O.S. TO CORRECT UNIT RESPONSE GENERATION
                                                                           00014890
      PROBLEMS -- PUT IN MULTIPLE OF 1.0E+50 FOR H-VALUES AND
                                                                           00014900
      ALLDWED POWER TO GO TO -170 INSTEAD! OF -50
                                                                           00014910
                                                                           00014920
      REVISED 2/13/80 & 3/07/80 BY J.O.S. AND J. 4.B. TO BETTER
                                                                           00014930
C.
                                                                           00014940
      HANDLE Q VS. C REVERSALS.
C
                                                                           00014950
      INTEGER REACH(20)
                                                                           00014960
      LOGICAL ZDIFFA.ZMULT
                                                                           00014970
      REAL K
                                                                           00014990
      COMMON KINSTRY Q(999)
                                                                           00014990
      COMMON /RTPARM/ REACH+K+X+TT+W+CZERO+NURS+RI+UR(20,100)+NRO+HWAY(200015000
                                                                           00015010
     rn)
                                                                           00015020
      COMMON /UNITS/ LCARD+LPRNT
                                                                           00015030
      DIMENSION C(20),QCQ(11),QCC(11),QKQ(11),QKK((11),Q1T(20),
                                                                           00015040
          NRESP(20), ITT(20), CBRK(4), TBRK(4), NBRK(4), NSL(3)
      3C9:(11)=0.0
                                                                           00015050
                                                                           00015060
      QCC-(11)=0.0
                                                                           00015070
      2K2(11)=0.0
      3KK((11)=0.0
                                                                           00015080
      INITIALIZE UNIT RESPONSE ARRAY.
                                                                           00015090
C
      CALL FILL (UR,1,2000,0.0)
                                                                           00015100
                                                                           00015110
      VURS=1
      VRF#1
                                                                           00015120
                                                                           00015130
      ITT(1)=0
      NURS=NUMBER OF UNIT RESPONSE FUNCTIONS.
                                                                           00015140
      WRF#RESPONSE FUNCTION NUMBER.
                                                                           00015150
      NRO-NUMBER OF ORDINATES IN RESPONSE FUNCTION.
                                                                           00015160
C
      SUM=0.0
                                                                           00015170
      IF (ZDIRFA) GO TO 30
                                                                           00015180
      COMPUTES UNIT-RESPONSE FUNCTION BY THE STORAGE
                                                                           00015190
С
      CONTINUITY METHOD.
                                                                           00015200
      WRITE (LPRNT, 300)
                                                                           00015210
```

```
.00015220
      DELMAT=0.1
                                                                             00015230
      DK=K/W
                                                                             00015240
      D=RI/W
                                                                             00015250
      CALL INFLOW (D.DELTAT)
                                                                             00015260
      CALL HYDROG (DK.DELTAT.X)
                                                                             00015270
      T=0.0
                                                                             00015280
      101.5=F 01 OC
                                                                             00015290
      I-L=CAr
                                                                             00015300
      T = T + D
                                                                             00015310
      N=T/DELTAT+1.05
      UR (NRF+NRO) =0.00155*D*Q(N)
                                                                             00015320
                                                                             00015330
      SUY=SUY+UR (NRF + NRO)
      IF (SUM.GE.1.00) GD TO 20
                                                                             00015340
      IF (UR(NRF, NRO).LT.0.0001) GO TO 20
                                                                             00015350
   10 CONTINUE
                                                                             00015360
                                                                             00015370
   20 ARITE (LPRNT.310) RI.K.W.X.NRO
                                                                             00015380
      30 TO 260
                                                                             00015390
   30 IF (ZMULT) GD TO 40
      WRITE (LPRNT.300)
                                                                             00015400
                                                                             00015410
      30 TO 160
   40 READ (LCARD+320) QMIN+QMAX
                                                                             00015420
      QMIN SHOULD BE THE LOWEST VALUE YOU ARE INTERESTED
                                                                             00015430
      IN. QMIN MUST BE > OR = TO THE LOWEST VALUE: IN
                                                                             00015440
C
C
      THE TABLE.
                  QMAX SHOULD BE < OR = TO THE LARGEST ENTRY
                                                                             00015450
                                                                             00015460
      IN THE TABLE.
      WRITE(LERNT.325) QMIN.QMAX
  325 FORMAT(1H0,10x, 'QMIN = ',F10.2.' CF5'/10x, 'QMAX = ',F10.2.' CF5')00015480
                                                                              00015490
      READ: DISCHARGE VS. DISPERSION TABLES
                                                                              00015500
      READ (LCARD.320) (QKQ(I).I=1.10)
                                                                              00015510
      READ (LOARD.320) (QKK(I).I=1.10)
                                                                             00015520
      READ DISCHARGE VS. CELERITY TABLE.
C
      READ (LOARD.320) (QCQ(I).I=1.10)
                                                                              00015530
      READ (LCARD, 320) (2CC(I), I=1,10)
                                                                             00015540
                                                                             00015550
      WRITE (LPRNT+330) (QKQ(I)+I=1+10)
                                                                             00015560
      WRITE (LPRNT.340) (QKK(I).I=1.10)
      WRITE (LPRNT.350) (QCQ(I).I=1.10) WRITE (LPRNT.340) (QCC(I).I=1.10)
                                                                             00015570
                                                                             00015580
                                                                              00015590
      WRITE (LPRNT.300)
      WRITE (LPRNT, 430) RI.X
                                                                              00015600
                                                                             00015610
      WRITE (LPRNT, 300)
                                                                             00015620
C
      DETERMINE THE BREAKPOINTS (IF ANY) OF Q VS. C
                                                                             00015630
C
                                                                             00015640
C
                                                                              00015650
      IF(QCC(1).ST.0.0) GO TO 42
                                                                             00015660
      WRITE (LPRNT+444)
  444 FORMAT (*0 C(1)=0.0 INVALID---CHECK CELERITY TABLE CARD*)
                                                                              00015670
                                                                              00015680
                                                                             00015690
   42 CALL TABL (QMIN+CBRK(1)+3CQ+3CC+1+VBRK(1))
                                                                              00015700
      CALL TABL (QMAX, CMAX, QCQ, QCC, 1, NMAX)
                                                                             00015710
      J=2
                                                                              00015720
      Il=NBRK(1)
                                                                              00015730
      IF(I1.LT.2) I1=2
      TBRK(1)=((5280.+x)/CBRK(1))/3600.
                                                                              00015740
                                                                              00015750
      DO 44 I=I1.10
                                                                              00015760
      IF((QCC(I)-QCC(I-1))+(QCC(I+1)-QCC(I)).GT.0.0)GO TO 44
      CBRK(J) =QCC(I)
                                                                              00015770
                                                                              00015780
      VBRK(J) = I
      J=J+1
                                                                              00015790
      IF (QCQ(E).LIT.QMAX) GO TO 43
                                                                              00015800
      CBRK(J-1) = CMAX
                                                                              00015810
                                                                              00015820
      NURK (J-1) = NMAX
```

```
00015830
   30 T0 45
43 IF (QCC(I+1).LE.0.0) G0 T0 45
                                                                             00015840
                                                                             00015850
   44 CONTINUE
                                                                             00015860
   45 IF(J.GT.4) GO TO 47
                                                                             00015870
      00 46 I=J.4
                                                                             00015880
      CBRK(I) = CBRK(I-1)
                                                                             00015890
      NBRK(I)=NBRK(I-1)
                                                                             00015900
   46 CONTINUE
                                                                             00015910
   47 TCHK=0.9
                                                                             00015920
      DO 48 I=2.4.
                                                                             00015930
      TBRK(I) = ((5280. + X) / CBRK(I)) / 3600.
                                                                             00015940
      TCHK=TCHK+ABS(TBRK(I-1)-TBRK(I))
                                                                             00015950
   48 CONTINUE
                                                                             00015960
      VURS=TCHK/RI
      A MAXIMUM OF 20 RESPONSE FUNCTIONS ARE CALCULATED.
                                                                             00015970
                                                                             00015980
      IF (RI.EQ.24.) NURS=20
                                                                             00015990
      IF (NURS.GT.5) GO TO 50
                                                                             00016000
      WRITE (LPRNT.360)
                                                                             00016010
   50 IF (NURS.GT.20) NURS=20
                                                                              00016020
      TCHK=TCHK/(NURS-1)
      IF (NURS.LT.20) TCHK=RI
                                                                             00016030
                                                                             00016040
   51 VSJM=0
                                                                              00016050
      00 52 I=1.3
                                                                             00016060
      VSLICE) =0
                                                                             00016070
      IF (TBRK(I) . EQ . TBRK(I+1)) GO TO 53
                                                                             00016080
      TSL=ABS(TBRK(I)-TBRK(I+1))/TCHK
                                                                             00016090
      NSLI(I) = INT(TSL + 0.5001)
                                                                             00016100
      IF(NSL(I).LE.0) NSL(I)=1
                                                                              09016110
      NSUM=NSUM+NSL'(I)
                                                                             00016120
   52 CONTINUE
                                                                             00016130
   53 IF (NSUM.LE.19) GO TO 60
                                                                              00016140
      TCHK=(TCHK/(NURS-1)) #NSU4
                                                                              00016150
      GO TO 51
                                                                              00016160
   60 NRF=1
                                                                              00016170
      00 105 NB=1.3
                                                                              00016180
      IF (NSL (NB) . EQ. 0) GO TO 110
                                                                              00016190
      NS=NSL(NB)
                                                                              00016200
      NXT=NBRK(NB)
                                                                              00016210
      IF (NB.GT.1) GO TO 65
                                                                              08016220
      C(1)=CBRK(1)
                                                                              00016230
      CALL TABL(C(1),QIT(1),QCC,QCQ,NXT,NQ)
                                                                              00016240
      VXT=NO
                                                                              00016250
   65 TNEKT=TBRK(NS)
                                                                              00016260
      TC+K=(TNEXT-TBRK( NB+1))/NS
                                                                              00016270
      20 100 NN=1.NS
                                                                              00016280
      NRFENRF+1
                                                                              00016290
      IF (NN.LT.NS) GO TO 70
                                                                              00016300
      C(NRF) = CBRY(NB+1)
                                                                              00016310
      30 TO 80
                                                                              00016320
   70 THEXT=THEXT-TCHK
                                                                              00016330
      C(NRF) = ((5280. +X)/TNEXT)/3600.
                                                                              00016340
С
                                                                              00016350
      FIND A DISCHARGE VALUE TO MATCH CELERITY.
C
                                                                              00016360
   80 CALL TABL(C(NRF),QIT(NRF),QCC,QCQ,NKT,NQ)
                                                                              00016370
                                                                              00016380
      NXT=NQ
  100 CONTINUE
                                                                              00016390
                                                                              00016400
  105 CONTINUE
                                                                              00016410
  110 YURS=NRK
                                                                              00016420
C
       GENERATE FLAGGING TABLE. HWAY=LINEARIZATION DISCHARGES
                                                                              00016430
C
```

```
00016440
                                                                            00016450
  130 LF=NURS-1
                                                                            00016460
      00 140 NRF=1.LF
  140 HWAY(NRE) = (Q1T(NRF) +Q1T(VRF+1))/2.
                                                                            00016470
      HWAY (NURS) =Q1T (NURS)
                                                                            00016480
                                                                            00016490
      VRF#1
                                                                            00016500
      1×1XF
      FIND DISPERSION COEFFICIENT TO MATCH DISCHARGE.
                                                                            00016510
С
                                                                            00016520
  150 CALL TABL (Q1T(NRF) . K . QK2 . QKK . NXT . VQ)
                                                                            00016530
      CZERO=C(NRF)
                                                                            00016540
      BEGIN CALCULATIONS FOR UNIT-RESPONSE USING KNOWN
                                                                            00016550
      DISPERSION AND CELERITY.
                                                                            00016560
  160 SK=3600.*K
                                                                            00016570
      SC=3600.*CZERO
      XFT=5280.*X
                                                                            00016590
                                                                            00016590
      SC2=SC*SC
                                                                            00016600
      TMEAN=X6T/SC+2*SK/SC2
      TT=TMEAN-(2.78+SQRT(2.+S<+XFT/(SC2+SC)+(8.+S\/SC2)+(SK/SC2)))
                                                                            00016610
      IF (TT.LE.0.0) TT=0.0
                                                                            00016620
                                                                            00016630
      TT=TT/RI
                                                                            00016640
      ITT(NRF) = IFIX(TT+0.5)
                                                                            00016650
      TT=ITT(NRF) #RI
                                                                            00016660
      TIME=TT
                                                                            00016670
      IF (TIME.LE.O.O) TIME=0.001
                                                                            00016650
      TIVIT=0.2
                                                                            00016690
      ILIM=IFIX((1.0/TINT)+0.5)
      ICYGLE=0
                                                                            00016700
                                                                            00016710
      URSUM=0.0
                                                                            00016720
      I=CAV
      NFLAG=0
                                                                            00016730
                                                                            00016740
      0=CNL
  170 POWER=SO*TIME-XFT
                                                                            00016750
      POWER = - (POWER + POWER)
                                                                            00016760
                                                                            00016770
      POWER=POWERY(4. *SK*TIME)
                                                                            00016780
      IF (POWER-LIT.-170.) POWERE-170.
      H=(1.0E+50/(2. +SQRT(3.1415927+SK))) +XFT/(TIME++(3./2.))
                                                                            00016790
                                                                            00016800
      H=H#EXP(POWER)
      IF (NFLAG.EQ.1) GO TO 210
                                                                            00016810
                                                                            00016820
      J+0NL=0NL
                                                                            00016830
      ICYCLE=#CYCLE+1
      URSUM=URSUM+H
                                                                            00016840
      IF (JNO.GT.ILIM) GO TO 200
                                                                            00016850
  180 REDETINITURSUM
                                                                            00016860
                                                                            00016870
      UI (NRF.NRO) =UR (NRF.NRO) +TINT*REO
      IF (ICYCLE.EQ.ILIM) GO TO 220
                                                                            00016880
                                                                            00016890
  190 TIME=TIME+RI#TINT
      GO TO 170
                                                                            00016900
                                                                            00016910
  200 NFLAG=1
                                                                            00016920
      TIME=TIME-RI
                                                                            00016930
      TF (TIME.LE.O.O) TIME=0.001
      30 TO 170
                                                                            00016940
  210 TIME=TIME+RI
                                                                            00016950
                                                                            00016960
      NFLAG=0
                                                                            00016970
      URSUM=URSUM-H
                                                                            00016980
      GO TO 180
                                                                            00016990
  220 IF (UR(NRF, NRO).LT.0.0) JR(NRF, NRO) = 0.0
                                                                            00017000
      SUMESUM+UR (NRF+NRO)
      ***SUM CHECK DELETED 6/22/78 BY J.D.S.***
                                                                            00017010
С
      IF (UR(NRF, NRO).LT.1.0E+46.AND.(UR(NRF, NRO)/SUM).LT.0.002)
                                                                            00017020
                                                                            00017030
         GO TO 230
      IF (NRO.EQ.100) GO TO 240
                                                                            00017040
```

```
00017050
      ICYCLE=0
                                                                           00017060
      VRO=NRO+1
                                                                           00017070
      GO TO 190
                                                                           00017080
  230 SU4=SUM-UR (NRF+NRO)
                                                                           00017090
      VROENRO-1
  240 IF (ZMULT) GO TO 250
                                                                           00017100
                                                                           00017110
      WRITE (LPRNT.390) RI.X.CZERO.K.NRO
      GO TO 260
                                                                           00017120
                                                                           00017130
  250 WRITE (LPRNT.440) CZERO. (LNRF.NRO
                                                                           00017140
  260 nO 270 I=1.NRO
      UR(NRF+I) = UR(NRF+I)/SUM
                                                                           00017150
                                                                           00017160
  270 CONTINUE
                                                                           00017170
      00 280 I=1.NRO.5
                                                                           00017180
      Il=I
      12=1+4
                                                                           00017190
                                                                           00017200
      IF (12.0T. NRO) 12=NRO
      ARITE (LPRNT,400) (J.UR(NRF,J).J=I1,I2)
                                                                           00017210
                                                                           00017220
  280 CONTINUE
                                                                           00017230
      WRITE (LPRNT,410) TT
      IF (ZMULT) GO TO 290
                                                                            00017240
      WRESP(1)=NRO
                                                                            00017250
                                                                            00017260
      WRITE (LPRNT.300)
                                                                            00017270
      RETURN
 290 WRITE (LPRNT.420) HWAY(NRF)
#RITE (LPRNT.300)
                                                                            09017280
                                                                            00017290
      VRESP(NRF)=NRO
                                                                            00017300
                                                                            00017310
      VRF#VRF+1
                                                                            00017320
      IF (NRF.GT.NURS) RETURN
                                                                            00017330
      VR0=1
                                                                            00017340
      SU4=0.0
                                                                            00017350
      30 TO 150
                                                                            00017360
C
                                                                            00017370
  300 FORMAT (1H0+10X+80(1H-))
                                                                            00017380
  310 FORMAT (1HO.10X.62HTHE STORAGE-CONTINUITY METHOD USING: 1) A ROUTIO0017390
     ING INTERVALLOF .F4.1.6H HRS.:/11X.39H2) A STORAGE-DISCHARGE COEFFICECITATION
    PCIENT, K = +F5.1+34H HRS.: 3) A TRANSLATION HYDROGRAPH/11X+14HTIME 00017410
     BASE. W =.F5.1.50H HRS.: AND 4) A STORAGE LEVERRITY COEFFICIENT, X00017420
     4 =.F5.2/11x,38HCOMPUTES A UNIT-RESPONSE FUNCTION WITH+I3.22H ORDIN00017430
                                                                            00017440
     54TES AS FOLLOWS:/)
  320 FORMAT (10F8.0)
                                                                            00017450
 330 FORMAT (1H0,10x,31HDISCHARGE VS. DISPERSION TABLE;/-11x-10F10-2) 340 FORMAT (1H +10x+10F10-2)
                                                                            00017460
                                                                            00017470
  350 FORMAT (1H0.10x.28HDISCHARGE VS. CELERITY TABLE./.11x.10F10.2)
                                                                            00017480
  360 FORMAT (1H0.5HNOTE:/1H .73HCONSIDER: USING SINGLE LINEARIZATION METODO17490
     IHOD NOT ENOUGH RESPONSE FUNCTIONS/.754 HAVE BEEN CALCULATED TO MACCOLTSON
     SKE THE MULTIPLE LINEARIZATION METHOD BENEFICIAL.)
                                                                            00017510
  370 FORMAT (1HO.87HMORE THAN 20 RESPONSE FUNCTIONS WERE CALCULATED. AD00017520
     TJUST TIME CHECK TO CALCULATE ONLY 20)
                                                                            00017530
  380 FORMAT (1H0.F15.0)
                                                                            00017540
  390 FORMAT (1H0.10x.59HTHE DIFFUSION ANALOGY METHOD WITH: 1) A ROUTING00017550
     I INTERVAL OF.F5.1.11H HRS. # 2) A/11X.17HREACH LENGTH. X =.F6.2.35H00017560
     7 HILES: 3) A WAVE CELERITY. CZERO =.F6.2.14H FT./SEC.: AND/11X.37H00017570
     34) A WAVE DISPERSION COEFFICIENT, < = . F9.1,12H SQ.FT./SEC../11X,3900017580
     4HCOMPUTES A UNIT-RESPONSE FUNCTION WITH .13.22H ORDINATES AS FOLLOGOO17590
                                                                            00017600
     5 m S:/)
  400 FORMAT (1H .10x.5(12,1H).F7.4,5X))
                                                                            00017610
  410 FORMAT (1H0.10X.21HTHE TRAVELITIME. TT =.F8.1.5H HRS.)
                                                                            00017620
  420 FORMAT (1H +10X+29HLINEARTZATION DISCHARGE, Q = +F9+1+4H CF6)
                                                                            00017630
  430_FORMAT (1H0+10X+55HTHE DIFFUSION ANALOGY METHOD WITH A ROUTING INTO0017640
     TERVAL OF.F5.1.11H HRS. AND A/11X.17HREACH LENGTH. X =.F6.2.61H MIL00017650
```

- . .

```
PES+ COMPUTES MULTIPLE UNIT-RESPONSE FUNCTIONS AS FOLLOWS:/)
                                                                             00017660
  440 FORMAT (1HO+10X,30HUSING A WAVE: CELERITY, CZERO =+F6.2,14H FT./SEC00017670
     1. AND/11x,34HA WAVE DISPERSION COEFFICIENT, K =+F9.1+12H SQ.FT./S00017680
     REC. +/11x + 29HCOMPUTES UNIT-RESPONSE NUMBER + 13 + 6H WITH + 13 + 22H OROIN00017690
     3ATES AS FOLLOWS: /)
                                                                             00017700
                                                                             00017710
      END'
                                                                             00017720
      SUBROUTINE UTILIT
                                                                             00017730
C
                                                                             00017740
      1 OCT 76
C
                                                                             00017750
C
C
         THIS SUBROUTINE. WITH VARIOUS ENTRY POINTS. PROVIDES THE USER
                                                                             00017760
                                                                             00017770
         WITH THE FOLLOWING CAPABILITIES:
С
                                                                             00017780
C
               1) FILL AN ARRAY WITH A CONSTANT!
               2) MULTIPLY AN ARRAY BY A CONSTANT:
                                                                             00017790
C
               3) MOVE ONE ARRAY TO ANOTHER ARRAY, WITH OFFSETS#
                                                                             00017800
C
                                                                             00017810
C
               4) ADD TWO ARRAYS: AND
               5) CONVOLUTE TWO ARRAYS. ACCUMULATE RESULT IN A THIRD.
                                                                             00017820
C
                                                                             00017830
C
      DIMENSION A(1) . B(1) . C(1) . HWAY(20) . CC(20.100) . NRESP(20) . LAG(200017840
     10)
                                                                             00017850
                                                                             00017860
С
C
         FILL SETS A(I).I=I1.I2: EQUAL TO VALUE
                                                                             00017870
                                                                             00017880
С
      ENTRY FILL (A.II.IZ. VALU)
                                                                             00017890
                                                                             00017900
      00 10 I=I1.I2
                                                                             00017910
      A(I)=VALU
   10 CONTINUE
                                                                             00017920
      RETURN
                                                                             00017930
                                                                             00017940
C
                                                                             00017950
C
         MULT MULTIPLIES A(I) . I=I1.12 BY VALU.
C
                                                                             00017960
                                                                             00017970
      ENTRY MULT(A.II.IZ.VALU)
      00 50 I=II•I5
                                                                             00017980
                                                                             00017990
      A(I)=A(I) #VALU
                                                                             00018000
   20 CONTINUE
                                                                             00018010
      RETURN
                                                                             00018020
C
         MOVE MOVES B(I+ISHFTB) INTO A(I+ISHFTA). I=I1.12.
                                                                             00018030
C.
C.
                                                                             00018040
      ENTRY MOVE (B.A. II. 12, ISHFITA, ISHFTB)
                                                                             00018050
                                                                             00018060
      00 30 I=I1.I2
      A(I+ISHRTA)=B(I+ISHFTB)
                                                                             00018070
   30 CONTINUE
                                                                             00018080
      RETURN
                                                                             00018090
                                                                             00018100
С
C
         ADD STORES B(I)+C(I) IN A(I),I=I1.I2
                                                                             00018110
                                                                             00018120
С
      ENTRY ADD (C+B+A+11+12)
                                                                             00018130
                                                                             00018140
      DO 40 I=I1+I2
      \Delta(I) = B(I) + C(I)
                                                                             00018150
                                                                             00018160
   40 CONTINUE
      RETURN
                                                                             00018170
                                                                             00018180
C
         CONVOL CONVOLUTES ELEMENTS II THRU IZ OF ARRAY B (THE
                                                                             00018190
С
         INPUT FUNCTION) WITH ELEMENTS 1 THRU NRO DE ARRAY C (THE
                                                                             00018200
С
         RESPONSE FUNCTION) AND ACCUMULATES THE RESULT IN ARRAY A
                                                                             00018210
C
                                                                             00018250
С
          (THE OUTPUT FUNCTION) . WHICH MAY BE LAGGED BY LAG TIME
         INTERVALS.
                                                                             00018230
С
                                                                             00018240
C
                                                                             00018250
      ENTRY CONVOL (A+B+CC+II+I2+NRO+NURS+HWAY+LAG+NRESP)
      IF (NURS.GT.1) GO TO 60
                                                                             00018260
```

	L=1	00018270
	00 50 I=I1+I2	00018280
	00 50 J=1+NR0	00018290
	K=I+J-1+LAG(LO	00018300
	$A(K) = A(K) + B(I) + CC(L \cdot J)$	00018310
50	CONTINUE	00018320
	RETURN	00018330
60	00 120 I=I1,I2	00018340
	28=B(I)	00018350
	n0 70 LL=1.NURS	00018360
	IF (QB.LE.HWAY(LL)) GO TO BO	00018370
70	CONTINUE	00018380
. •	L= YURS	00018390
	30 TO 90	00018400
80	L=LL.	00018410
	IF (L.EQ.1) GO TO 100	00019420
,,	38=98-HWAY(L-1)	00018430
100	NROWNRESP (L)	00018440
100	00 110 J=1•NRO	00018450
	K=I+J-1+LAG(L)	00018460
	A(K) = A(K) + 2B + CC(L + J)	00018470
110	CONTINUE	00018480
110	IF (L.EQ.1) GO TO 120	00018490
	28=HWAY(L-1)	00018500
	(FLF1	00018510
	30 TO 90	00018520
120	•	00018530
120	RETURN	00018540
	END:	00018550
	EIA 7.	0.010270

APPENDIX D. ILLUSTRATIVE EXAMPLE OF USING CONROUT MODEL

Statement of Problem and Summary of Results

The purpose of this flow-routing analysis is to investigate the potential for use of the CONROUT model for streamflow routing to simulate daily mean discharges at station 11520500, Klamath River near Seiad Valley, California. A schematic diagram of the Klamath River study area is presented in figure DI. In this application a bestfit model for the entire flow range is the desired product. Streamflow data available for this analysis are summarized in table DI.

Table Dl.--Gaging stations used in the Klamath River flow-routing study

Station no.	Station name	Drainage area (mi ²)	Period of record
11516530	Klamath River below Iron Gate Dam, CA.	4,630	Oct 1960-present
11517500	Shasta River near Yreka, Ca.	793	Oct 1933-Sep 1941 Oct 1944-present
11519500	Scott River near Fort Jones, Ca	. 653	Oct 1941-present
11520500	Klamath River near Seiad Valley, Ca.	6,940	Oct 1912-Sep 1925 Oct 1951-present

The distance between the two gages on the Klamath River is 36.80 miles. Two tributaries confluence with the Klamath at 14.65 and 23.80 miles upstream of station 11520500. Intervening ungaged drainage area between stations 11516530 and 11520500 is 864 mi² or 12.45 percent of the total drainage area contributing to the Seiad Valley site. The tributary station at 11519500 with a drainage area of 653 mi² was selected as the index station to estimate the flow response from the intervening ungaged area.

To simulate the daily mean discharges, the approach was to route the flow along the Klamath from Iron Gate Dam to Seiad Valley using the diffusion analogy method with a single linearization. Flow was also routed along the Scott River and combined with the Klamath at its confluence. Since the Shasta River gage is near the confluence with the Klamath, flows from the Shasta River were added directly to the Klamath River flow at the confluence. The intervening drainage area was accounted for by using data from station 11519500 adjusted by a drainage area ratio. The total discharge at Seiad Valley was the summation of the routed discharge along the Klamath and an adjusted discharge from station 11519500.

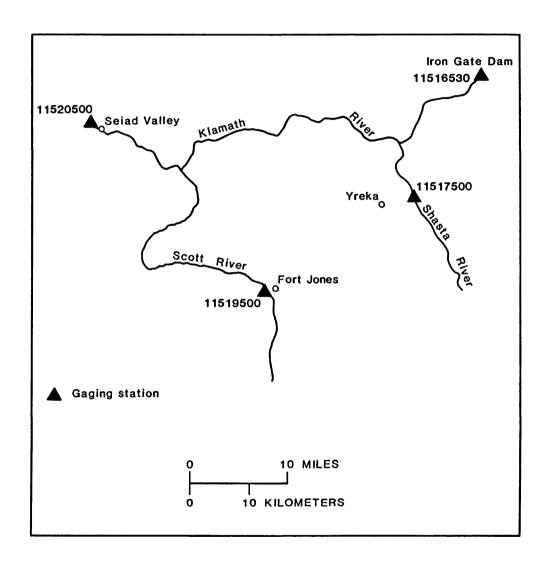


Figure D1.--The Klamath River study area.

Data for station 11520500 for the 1980 water year were used to calibrate the model while 1981 and 1982 water year data were used to verify the model. The model requires concurrent data for all stations used in the analysis and while concurrent data were also available for water years 1961 through 1979, only the last three years were used. In restricting the analysis to the most recent data for comparison, the model will better represent the present conditions. Previous undocumented changes in the system might invalidate the model's application to the earlier period.

To route flow in the Klamath River system, it was necessary to determine the model parameters C_0 (flood wave celerity) and K_0 (wave dispersion coefficient). The coefficients C_0 and K_0 are functions of channel width (W_0) , in feet, channel slope (S_0) in feet per foot (ft/ft), the slope of the stage discharge relation (dQ_0/dy_0) in square feet per second (ft^2/s) , and the discharge (Q_0) in cubic feet per second (ft^3/s) representative of the reach in question and are determined as follows:

$$C_{O} = \frac{1}{W_{O}} \frac{dQ_{O}}{dy_{O}}$$
 (D1)

$$K_{O} = \frac{O_{O}}{2S_{O}W_{O}}$$
 (D2)

Values for $C_{\rm O}$ and $K_{\rm O}$ were computed from information obtained at stations 11516530, 11519500 and 11520500. The discharge $O_{\rm O}$, for which initial values of $C_{\rm O}$ and $K_{\rm O}$ were linearized was the long-term mean daily discharge at each of these stations. Also, at each station, the channel width, $W_{\rm O}$, was obtained from width-discharge relationships; channel slope, $S_{\rm O}$, was determined from gage-elevation information; and $(dQ_{\rm O}/dy_{\rm O})$, was determined from the rating curves by bracketing the mean discharge and computing for an incremental change in gage height the associated change in discharge. There were four reaches in which routing were performed and average values of $C_{\rm O}$ and $K_{\rm O}$ were computed for each reach by averaging the values computed at the stations. Along the Klamath, adjustments were made to $C_{\rm O}$ and $K_{\rm O}$ in proportion to the distance each reach was upstream of station 11520500.

Table D2 identifies each reach and final calibrated values of $\rm C_{\rm O}$ and $\rm K_{\rm O}$ used for routing flow through the reach.

Table D2.--Calibrated model parameters for Klamath system reaches

Reach	Begin (B) End (E)	Length (mi)	C _o (ft/s)	K _o (ft ² /s)
1	(B) Station 11516530 (E) Confluence of 11517500 with Klamath	13.00	6 . 375	1,343
2	(B) Confluence of 11517500 with Klamath (E) Confluence of 11519500 with Klamath	9.15	7.000	1,840
3	(B) Station 11519500(E) Confluence of 11519500with Klamath	18.40	4.670	459
4	(B) Confluence of 11519500 with Klamath (E) Station 11520500	14.65	7 .440	2,150

To simulate flow from the intervening ungaged drainage area of $864~\text{mi}^2$, a drainage-area ratio was calculated by using the drainage area at the index station 11519500 (653 mi²) and dividing it into the ungaged area (864/653 = 1.32). This value was adjusted to 1.34 during calibration.

During calibration $C_{\rm O}$ and $K_{\rm O}$ were varied, as well as the computed drainage area ratio. The best fit single linearization model was with the originally determined $C_{\rm O}$, $K_{\rm O}$ and slightly adjusted drainage area ratio. Table D3 presents the results of the routing model for simulated flows at station 11520500.

```
***** 1980 WY SUMMARY ****

Mean Error (%) for 366 days = 5.80

Mean - Error (%) for 253 days = -6.17

Mean + Error (%) for 113 days = 4.97

Q1 Volume (SFD) = 1321710.

Q2 Volume (SFD) = 1325723.

Volume Error (%) = -0.30

RMS Error (%) = 7.57
```

```
56 Percent of total observations had Errors <= 5 Percent 84 Percent of total observations had Errors <= 10 Percent 93 Percent of total observations had Errors <= 15 Percent 98 Percent of total observations had Errors <= 20 Percent 99 Percent of total observations had Errors <= 25 Percent 1 Percent of total observations had Errors > 25 Percent 25 Perc
```

The summary in table D3 includes the 1980 water year from October 1, 1979 to September 30, 1980. It can be noted that the mean error for 366 days is 5.80 percent with a volume error less than I percent. The bottom half of table D3 lists the percent of total observations that had errors less than or equal to 5, 10, 15, etc. percent. Depending upon what the error acceptance criteria are for station 11520500, simulation of discharge data at the station could be performed with the routing model in lieu of actually gaging the flow.

Table D4 presents summary statistics for the verification period --1981 and 1982 water years. The results in table D4 are comparable to the calibration results.

```
***** 1981 & 1982 WY SUMMARY *****

Mean Error (%) for 730 days = 6.36

Mean - Error (%) for 437 days = -5.60

Mean + Error (%) for 293 days = 7.50

Q1 Volume (SFD) = 2971071.

Q2 Volume (SFD) = 2966621.

Volume Error (%) = 0.15

RMS Error (%) = 9.46
```

```
54 Percent of total observations had Errors <= 5 Percent 85 Percent of total observations had Errors <= 10 Percent 92 Percent of total observations had Errors <= 15 Percent 96 Percent of total observations had Errors <= 20 Percent 97 Percent of total observations had Errors <= 25 Percent 3 Percent of total observations had Errors > 25 Percent
```

The flow developed for the Klamath River system produced very good results. This indicates that computed model parameters, selected index station and calculated drainage-area ratio can be expected to give optimum results. Certainly, the small amount of ungaged area and a representative index station contributed significantly to these results.

Figure D2 is a comparison of the observed and simulated discharge at station 11520500 for a high flow period in January, 1980. The fit for this period is very good as was the other periods used in the comparison.

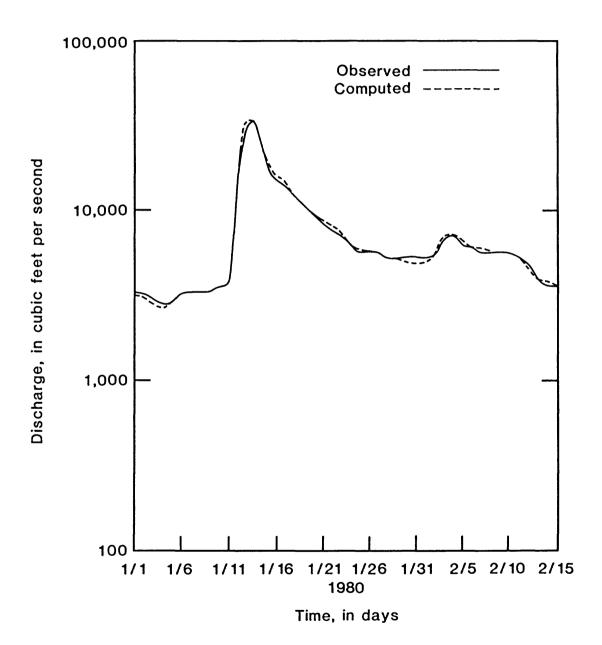


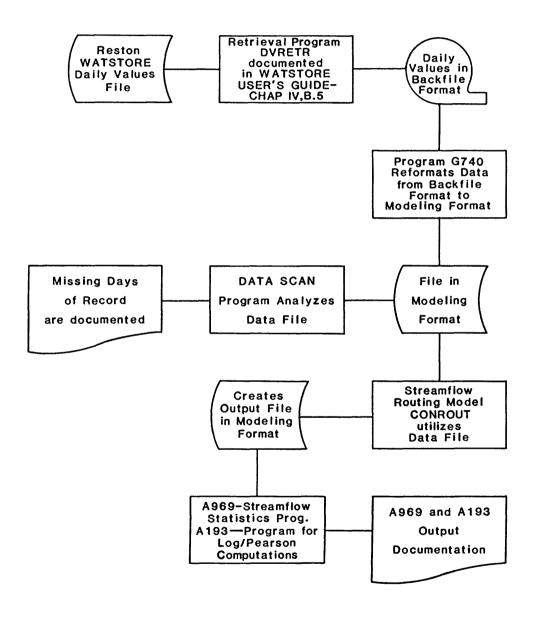
Figure D2.—Comparison of observed and simulated discharge at station 11520500.

Model Processing Instructions

This section of Appendix D describes the data processing procedures used in the Klamath River Modeling analysis. Figure D3 illustrates how the data flows into and out of the model and these steps describe the path of the data.

- Data are retrieved from WATSTORE;
- 2. The data are transformed;
- 3. The data are edited;
- 4. The data are used in the model; and
- 5. Statistical analyses are performed on model-generated data.

These steps are described in more detail in the following paragraphs.


First, the station data that were used in the Klamath modeling analysis had to be located. Data not on the current WATSTORE Daily Values File had to be identified as to which historic tape contained the data. A computer program execution of the "WATSTORE MESSAGE" generated a listing of tapes and related states for which Daily Values data in the backfile format were stored. JCL cards used were as follows:

```
//AG4J31JD JOB (4385028001/, RPT,2,9), 'H_DOYLE', CLASS=B2//PROCLIB DD DSN=WRD.PROCLIB, DISP=SHR
// EXEC MESSAGE, WRDMSG='WRD02'
/*
//
```

Data that have been identified for retrieval can be retrieved from WATSTORE with the cataloged "Daily Values" retrieval program.

Figure D4 illustrates an example of the necessary information to retrieve data from WATSTORE for four surface-water stations in the Klamath River study. Figure D4 shows that the cataloged procedure DVRETR (line 00000050) is run on tape 115613 to retrieve historic daily streamflow data (parameter code 00060 in lines 00000180, 00000210, 00000240 and 00000270) for the complete period of record for stations 11516530, 11517500, 11519500 and 11520500. Current data were also included in these retrievals by coding a '3' in column 2 on lines 00000170, 00000200, 00000230 and 00000260. The retrieved data were stored in an online disk file named 'AG40XEJ.MENLOPRK.DAILYQ3' (line 00000060).

^{1/}Account number displayed for illustration purpose only. Please use appropriate account number here and in all other illustrated JCL. 2/All JCL documented in Appendix D are for running jobs on the U.S. Geological Survey's Amdahl computer system in Reston, VA.

. Figure D3. -- Flowchart of CONROUT and related programs.

```
'//AG40xEJH JOB (470698870, RPT.4, 10), 'H DOYLE', CLASS=B
                                                                                00000010
/#ROUTE PRINT RMT046
                                                                                00000020
/#SETUP
            115613/4
                                                                                00000030
//PROCLIS
            DD DSN=WRD.PROCLIB.DISP=SHR
                                                                                00000040
       EXEC DVRETR, AGENCY=USGS, VOL1=115613,
                                                                                00000050
     NAME4=+AG40XEJ.MENLOPRK.DAILYQ3+,UNIT4=ONLINE,3LK4=11592,SP4=25,
11
                                                                                00000060
// DISP4=! (NEW+CATLG) !
                                                                                00000070
*//* IN THE DATA CARDS THAT FOLLOW //HOR.SYSIN DD * THE
                                                                                00000090
//* FIRST CARD STATES THAT BOTH CURRENT AND HISTORICAL DATA
                                                                                00000090
//* ARE TO BE RETRIEVE. THE 2ND CARD STATES THAT PARAMETER //* CODE 00060 FOR DAILY DISCHARGE IS TO BE RETRIEVED.
                                                                                00000100
                                                                                00000110
//* THE LAST CARD IDENTIFIES THE STATION DOWNSTREAM ORDER #.
                                                                                00000120
//* AS MANY RETRIEVALS AS NECESSARY CAN BE MADE WITH THE
                                                                                00000130
//* PROCEDURE BEING JUST TO ADD THE NECESSARY 3 CARDS
                                                                                00000140
 //* FOR EACH STATION THAT YOU WANT TO RETRIEVE DATA FOR.
                                                                                00000150
//HDR.SYSIN DD *
                                                                                00000150
 43
                                                                                00000170
200060
                                                                                00000190
D
         11516530
                                                                                00000190
43
                                                                                00000200
200060
                                                                                00000210
         11517500
                                                                                00000220
43
                                                                                00000230
R00060
                                                                                00000240
0
         11519500
                                                                                00000250
43
                                                                                00000260
₹00060
                                                                                00000270
0
         11520500
                                                                                00000290
/*
                                                                                00000290
11
                                                                                00000300
```

Figure D4.--JCL for Daily-Value Retrieval from WATSTORE.

Figure D5 illustrates the format of a retrieved record containing one water-year of data in the standard 1656-byte backfile record format. The data retrieved from WATSTORE were transformed by program G740 (fig. D6) for input to the streamflow routing model. Data for the four stations were retrieved from the computer file previously named 'AG40XEJ.MENLOPRK.DAILY03' (line 00000230 //FT10F001...) that was created in the WATSTORE retrieval (fig. The individual station data were output on separate files as identified by data set names in lines 00000310 to 00000340 (fig. D6). The variable NRECXX in the same lines was assigned values corresponding to the number of years of data to be transformed into the modeling format. An additional record had to be allocated for a header record. NRECXX is expressed in increments of 20 (20, 40, 60, 80 and 100). For example, in line 00000370 22 years of data plus 1 header record were processed, so that space for 23 records had to be reserved. Therefore, NRECXX was set equal to 40, the next largest increment of 20. The respective file (26-29) for each station and the number of records were established in lines 00000370 to 00000400. The relationship between the input data and the JCL file descriptions is illustrated in the chart in the lower right-hand part of figure D6.

Figure D7 illustrates an example of a direct-access disk file of records in the modeling format. Each year of daily data requires one record, and for the four stations, the data are stored in records 2-NRECDS on each file. The first record of each file is reserved for header identification of the station and the number of years of data on the file. Hourly data can also be stored in the modeling format. If the data are hourly then these data are stored in consecutive records, two per month, and contiguous months for the specified time period. For a given month, the first 15 days of hourly data are stored in the first record and the remaining days in the next record. Therefore, a complete year of hourly data would require 24 records.

Figure D8 documents an editing program called "DATA SCAN" that can be used to analyze modeling format data to determine individual days of missing data. This program, like G740 and CONROUT, makes use of an inline procedure that allows the user greater flexibility in identifying the files. Figure D8 also shows where input JCL are placed (lines 00000350 to 00000390) and that description data for identfying the stations and files follow line 00000400 //G.SYSIN DD *.

Figure D9 documents the JCL for executing CONROUT. The inline procedure CONROUT (fig. D9, lines 00000040 to 00000130 and lines 00000310 to 00000350) allows as many as five input and five output files to be processed by CONROUT. Input files are designated as FILE 21 through FILE 25 and output files, FILE 26 through FILE 30. These JCL file declaration cards follow line 00000300. The input/output file associations are declared in the INPUT DATA that follows line 00000390. Input and output files are in the modeling format (fig. D7). Additional output files (See footnote 3/ in Time Data Card section of report) 17, 18, and 19, can also be defined (lines 00000360 to 00000380). In this example they have been "dummied out."

	Y		
	DEC		
1973	NOV		
	OCT		
	SEP	*	
	AUG		
	JUL		
	JUN	*	ored
1974	MAY		perc+s (00 86888)
	APR	*	666666)
	MAR		
	FEB	* * *	No value indicator
	JAN		* NO VA
		128470 · · 654820	-

Figure D5.--Example of WATSTORE Daily Values Format for the 1974 water year.

```
//AG40×EJH JOB (470698870.RPT.2.5)...H DOYLE..CLASS=B
                                                                           00000010
/#ROUTE PRINT RYT046
                                                                           00000020
//* THIS JCL IS STORED IN AG4J31J.KLAMATH.G740PRDC.CNTL!
                                                                           00000030
//* AND CAN BE EXECUTED BY SIGNING ON TO THE TSO AND THEN
                                                                           00000040
//* EDIT 'AG4J31J.KLAMATH.G740PROC.CYTL'
                                                                           00000050
//* AND CHANGING INPUT DATA CARDS AS NEEDED AND THEN
                                                                           00000060
//* SUBMIT *
                                                                           00000070
//G740PROC PROC NAME26=+L&F+.NAME27=+L&G+.NAME28=+LLH+.
                                                                           00000080
// NAME29=1&&!!.NAME30=!&&J!.R=;
                                                                           00000000
// COND26=!(+CATLG+DELETE)+UNIT=ONLINE!+NREC26=20+
                                                                           00000100
// COND27=!(.CATLG.DELETE).UNIT=ONLINE!, NREC27=20,
                                                                           00000110
// COND28='(,GATLG,DELETE).UNIT=ONLUNE',NREC28=20,
                                                                           00000120
// COND29=!(+CATLG+DELETE)+UNIT=ONLINE!+NREC29=20+
                                                                           00000130
// COND30='(,CATLG.DELETE).UNIT=ONLINE'.NREC30=20.
                                                                           00000140
// SP=!(1552+(*+ETC=*)+,CONTIG),DCB=(DSORG=DA) !
                                                                           00000150
//G EXEC PG4=G740 REGION=&R
                                                                           00000160
//STEPLI3 DD BSN=AG4J31J.DOYLE.PGMLTBE.DISP=SHR
                                                                           00000170
11
          DD BSN=SYS1.FORTG.LINKLIBX.DISPESHR
                                                                           00000180
11
          DO BSN=SYS1.PLIX.TRANGLIB.DISP=SHR
                                                                           00000190
//SYSPRINT
            DD SYSOUT=A
                                                                           00000200
//FT06F001 DD SYSOUT=A+DCB=(RECFM=FBA+LRECL=133+BLKSIZE=6118)
                                                                           00000210
//FT05F001 DD DDYAME=SYSIN
                                                                           00000550
//FT10F001 DD DSN=AG40XEJ.MENLOPRK.DAILY23,UNIT=ONLUNE,DISP=OLD
                                                                           00000230
//FT26F001 DD DSN=&NAME26.DISP=&COND26.SPACE=&SP&NREC26&ETC
                                                                           00000240
//FT27F001 OD DSN=LNAME27.DISP=&COND27.SPACE=&SP&NREC27&ETC
                                                                           00000250
//FT28F001 DD DSN=&NAME28.DISP=&COND28.SPACE=&SP&NREC28&ETC
                                                                           00000260
//FT29F001 DD DSN=&NAME29.DISP=&COND29.SPACE=&SP&NREC29&ETC
                                                                           00000270
//FT30F001 DD DSN=&NAME30.DISP=&COND30.SPACE=&SP&NREC30&ETC
                                                                           00000280
    PEND
                                                                           00000290
    EXEC G740PROC.
11
                                                                           00000300
    NAME26='A840XEJ.KL516530.G740FHT',NREC26=40,
11
                                                                           00000310
11
    NAME27= 'A040XEJ.KL517500.G740F4T', NREC27=60,
                                                     Input
                                                                           00000320
    NAMEZ8= 44840XEJ.KL519500.G740F4T +, NREC28=60.
11
                                                                           00000330
                                                      JCL
   NAME29= A940XEJ.KL520500.G740FMT + NREC29=60+
11-
                                                                           00000340
// R=1504
                                                                           00000350
//G.SYSIN DD +
                                                                           00000360
  11516530
             26
                   23
                                                                           00000370
                       Input
  11517500
             27
                   47
                                                                           00000380
  11519500
             28
                   42
                       Data
                                                                           00000390
  11520500
             29
                   45
                                                                           00000400
/#
                                                                           00000410
11
                                                                           00000420
Station No.
                 Number of years
                                        # of WATSTORE
Cols. 3-10
                 of data retrieved
                                        RECORDS
                                                         NRECDS
                                                                       NRECXX
   File No. XX
                 from WATSTORE
   Cols. 14-15
                 + 1 record for
                                           1-19
                                                          2-20
                                                                         20
                 header
                                          20 - 39
                                                         21-40
                                                                         40
                 Cols. 19-20
                                          40 - 59
                                                         41-60
                                                                         60
                                          60 - 79
                                                         61-80
                                                                         80
                                          80-99
                                                         81-100
                                                                         100
```

Figure D6.--JCL for executing G740 Program.

Header Record	-		·			Data Records								
Etc., etc.		Λ		`	\		5	\	_				oints in	upon time or hourly points)
NAME 55	Q(I), I=1, ITEMS	=	=	/			=	Ξ	=	=			Total # of data points in	a record depends upon time increments daily or hourly (384 maximum # of points)
STATION NAME	ITEMS	=	=			74	=	=	=	ш			# of	data points in each record
ON NO.	JYEAR "	=	=				2	E	=	II.	/		Calender date of 1st	ne record
STATIC	JDAY "	=	=				:	=	=	11		>	r date of	int in th
NRECDS	JMON "	=	=				=	=	=				Calende	data po
1	N W	4	Ŋ		•		.	NRECDS-2	NRECDS-1	NRECDS			Total # of	records in the file

Figure D7. -- Example of a file of records for modeling format.

```
//AG40XEJH JOB (470698870.RPT.2.3).'H DOYLE'.CLASS=B
                                                                         00000010
/*ROUTE PRINT RM046
                                                                         00000020
//* THIS JCL IS STORED IN AG4J31J.KLAMATH&DATASCAN.CNTL!
                                                                         00000030
//P AND CAN BE EXECUTED BY SIGNING ON TO THE TSO AND THEN
                                                                         00000040
//* EDIT 'AG4J31J.KLAMATH.DATASCAN.CNTL'
                                                                         00000050
//* AND CHANGING INPUT DATA CARDS AS NEEDED AND THEN
                                                                         00000060
//* SU9MIT *
                                                                         00000070
//DATA CAN PROC VAME21=166F1, NAME22=166G1, NAME23=166H1,
                                                                         00000000
// NAME24='&&I'.4ME25='&&J',COND21='(,PASS),UNIT=SYSDK',
                                                                         00000090
// CDND22=*(.PASS).UNIT=SYSDK*.COND23=*(.PASS).UNIT=SYSDK*.
                                                                         00000100
// CDND24=+(,PASS).UNIT=SYSDK+.COND25=+(,PASS).UNIT=SYSDK+.
                                                                         00000110
// ETC=',SPACE=(1552.1).DCB=(D50RG=DA)',R=
                                                                         00000120
110
                                                                         00000130
//G FXEC PGM=SCAN-REGION=&R
                                                                         00000140
//STEPLI3 DD DSN=AG4J31J.DOYLE.PGMLEBE.DISP=SHR
                                                                         00000150
          DD DSN=SYS1.FORTG.LINKLIBX.DISP=SHR
                                                                         00000150
11
          DD DSN=SYS1.PLIX.TRANGLIB.DISP=SHR
                                                                         00000170
11
//SYSPRINT DD SYSOUT=A
                                                                         00000180
//FT06F001 DD SYSOUT=A.DCB=(RECFM=FBA.LRECL=133.9LKSIZE=6118)
                                                                         00000190
//FT15F001 DD SYSOUT=A.DCB=(RECFM=FBA.LRECL=133.3LKSIZE=6118)
                                                                         00000200
//SYSPUNCH DD SYSOUT=B
                                                                         00000210
//FT07F001 DD SYSOUT=8
                                                                         00000220
//FT05F001 DD DDNAME=SYSIN
                                                                         00000230
//FT21F001 DD DSN=LNAME21.DISP=&COND21&ETC
                                                                         00000240
//FT22F001 DD DSN=&NAME22.DISP=&COND22&ETC
                                                                         00000250
//FT23F001 DD DSY=&NAME23.DISP=&COND23&ETC
                                                                         00000250
//FT24F001 DD DSN=&NAME24+DISP=&COND24&ETC
                                                                         00000270
//FT29F001 DD DSN=&NAME25.DISP=&COND25&ETC
                                                                         00000280
                                                                         00000290
//+ ILLUSTRATED IS JCL FOR ONLY 4 FILES. A MAXIMUM OF 5 FILES CAN BE
                                                                         00000300
//* INPUT IN ANY ONE RUN WITH FILE NUMBERS 21 THRU 25.
                                                                         00000310
//*
                                                                         00000320
// PEND
                                                                         00000330
   EXEC DATASCAN.
11
                                                                         00000340
    NAME21='A840XEJ.KL516530.G740FMT',CDND21=SHR,
                                                                         00000350
11
   NAME22='A840XEJ.KL517500.G740FMT',COND22=SHR.
                                                                         00000360
11
   NAME23=+A840XEJ.KL519500.G740F4T+,CDVD23=SHR,
11
                                                                         00000370
11
   NAMEZ4= AB40XEJ. KL520500.G740FMT . COND24=SHR.
                                                                         00000380
// R=150K
                                                                         00000390
//G.SYSIN DD .
                                                                         00000400
  21
      11516530
                                                                         00000410
      11517500
                                                                         00000420
   22
  23
      11519500
                                                                         00000430
      11520500
                                                                         00000440
  24
                                                                         00000450
                                                                         00000460
11
```

Figure D8.--JCL for executing DATA SCAN Program.

```
//AG40XEJH JOB (470698870, RPT, 2, 9), 'H DOYLE', CLASS=B
                                                                          00000010
/*ROUTE PRINT RMT046
                                                                          00000020
                                                                          00000030
//* THIS PROC STORED IN AG4J31J.KLAMATH.CONROUT.CNTL
//CONROUT PROO NAME21="LLA", NAME22="LLB", NAME23="LLC";
                                                                          00000040
// NAME24='668'.NAME25='66E'.NAME26='66F',NAME27=±66G'.
                                                                          00000050
// NAME28='&&M', NAME29='&&I', NAME30='&&J',
                                                                          00000060
// COND21=*(,PASS),UNIT=SYSDK*,COND26=*(,CATLG.DELETE),UNIT=ONLINE*.
                                                                          00000070
// COND22= ( .PASS) .UNIT=SYSDK .COND27= ( .CATLG.DELETE) .UNIT=DNLINE .
                                                                          00000080
// CDND23=*(+PASS).UNIT=SYSDK*.CDND28=*(+CATLG.DELETE).UNIT=ONLINE*.
                                                                          00000090
// COND24=*(,PASS).uNIT=SYSDK*,COND29=*(,CATLG.DELETE).uNIT=ONLINE*.
                                                                          00000100
                                                                          00000110
// COND25=*(.PASS).UNIT=SYSDK*.COND30=*(,CATLG.DELETE).UNIT=ONLINE**
// ETCl='+SPACE=(1552-1).DCB=(DBORG=DA)',R=150K+
                                                                          00000120
// SP='(1552+(*+NREC=+ETC2=*)++CONTIG)+DCB=(DSORG=DA)*
                                                                          00000130
//G EXEC PGM=T351 - REGION=&R
                                                                          00000140
                                                                          00000150
//STEPLIB: DD DSN=AG4J31J.DOYLE.PGMLEBE.DISP=SHR
//SYSPRINT DD SYSOUT=A
                                                                          00000160
//FT06F001 DD SYSOUT=A+DCB=(RECFM=FBA+LRECL=133+3LKSIZE=6118)
                                                                          00000170
//FT05F001 DD DDNAME=SYSIN
                                                                          00000180
                                                                          00000190
//FT21F001 DD DSN=&NAME21.DISP=&COND21&ETC1
//FT22F001 DD DSY=&NAME22.DISP=&COND22&ETC1
                                                                          00000200
//FT23F001 DD DSN=&NAME23.DISP=&COND23&ETC1
                                                                          00000210
//FT24F001 DD DSN=6NAME24.DISP=6C0ND246ETC1
                                                                          00000220
//FT29F001 DD DSY=&NAME25.DISP=&COVD25&ETC1
                                                                          00000230
//FT26F001 DD DSN=&NAME26.DISP=&COND26.SPACE=&SP&NREC&ETC2
                                                                          00000240
//FT27F001 DD DSN=&NAME27.DISP=&COND27.SPACE=&SP&NREC&ETC2
                                                                          00000250
//FT28F001 DD DSV=6NAME29.DISP=6COVD28.SPACE=6SP6NREC6ETC2
                                                                          00000260
//FT29F001 DD DSN=&NAME29,DISP=&COND29.SPACE=&SP&NREC&ETC2
                                                                          00000270
//FT30F001 DD DSN=6NAME30,DISP=6COND30,SPACE=6SP$NREC6ETC2
                                                                          00000290
// PENO
                                                                          00000290
// EXEC CONROUT.
                                                                          00000300
// NAME21='AG40XEU.KL516530.G740FMT'.COND21=SHR.
                                                                          00000310
// NAME22= AG40XEU.KL517500.G740FMT +.COND22=SHR+
                                                                          00000320
// NAME23='AG40XEJ.KL519500.G740FMT'.COND23=SHR.
                                                                          00000330
// NAME24='AG40XEJ.KL520500.G740FMT'.COND24=SHR.
                                                                          00000340
// NRFC=20
                                                                          00000350
//G.FT17F001 DD DUMMY
                                                                          00000360
//G.FT18F001 DD DUMMY
                                                                          00000370
//G.FT19F001 DD DUMMY
                                                                          00000380
//G.SYSIN DD +
                                                                          00000390
        01 1979 1200
                             30 1980 1200
                                                                          00000400
                       09
                                            20
                                                 24
                                                       0
I=21,0=26,ROUTE,DIFFA
                                                                          00000410
11516530 11516530 FLOW ROUTED DOWN TO 1ST CONFLUENCE
                                                                          00000420
C=6.375. X=1343. X=13.0. REACH=11516530 TO 1ST CONFLUENCE
                                                                          00000430
I=22.0=26.ADD
                                                                          00000440
9999999 11517500 FLOW ADDED AT KLAMATH CONFLUENCE
                                                                          00000450
I=26.0=27.ROUTE.DIFFA
                                                                          00000460
99999999 FLOW ROUTED ALONG MIDDLE OF KLAMATH
                                                                          00000470
C=7.00.K=1840.X=9.15.REACH=MIDDLE ROUTED FLOW
                                                                          00000450
1=23.0=28.ROUTE.D1FFA
                                                                          00000490
9999999 11519500 FLOW ROUTED TO KLAMATH CONFLUENCE
                                                                          00000500
C=4.67.K=459.X=18.4.REACH=11519500 TO KLAMATH
                                                                          00000510
I=27.0=28.ADD
                                                                          00000520
99999999 11519500 FLOW ADDED AT CONFLUENCE
                                                                          00000530
I=28.0=29.ROUTE.DIFFA
                                                                          00000540
11520500 FINAL ROUTED FLOW TO 11520500
                                                                          00000550
C=7.44.K=2150.X=14.65.REACH=LAST REACH
                                                                          00000560
I=23.0=29.RATIO=1.34.ADD
                                                                          00000570
11519500 INDEXED: STATION FOR UNGAGED WITH R=864/653=1.34
                                                                          00000580
COMPARE + F=29 + S=24
                                                                          00000590
COMPARISON OF SIMULATED AND OBSERVED FLOWS AT 11520500
                                                                          00000600
PLOT. #=29. S=24. QMIN=10
                                                                          00000610
PLOT OF SIMULATED AND OBSERVED FLOWS AT 11520500
                                                                          00000620
/ ●
                                                                          00000630
11
                                                                          00000640
```

Figure D9.--JCL for executing CONROUT Program.

Operations to be performed by CONROUT are defined on data cards that follow line 00000390//G.SYSIN DD * in figure D9. The following is a general description of the individual steps performed by CONROUT in the Klamath River analysis. All the available model options are described in detail in a previous section of this report and can be used to explain the individual data entries listed in lines 00000400 to 00000620.

- a. The period of record used in the analysis is defined in line 00000400.
- b. Step 1 (lines 00000410 to 00000430) defines model parameter information for routing flow from station 11516530 to the Shasta River confluence 13.0 miles downstream on the Klamath River.
- c. Step 2 (lines 00000440 and 00000450) state that flow from station 11517500 is added to the Klamath River flow at its confluence with the Klamath.
- d. Step 3 (lines 00000460 to 00000480) defines model parameter information for routing the combined flow at the Shasta River confluence for 9.15 miles downstream to the Scott River confluence with the Klamath.
- e. Step 4 (lines 00000490 to 00000510) defines model parameter information for routing flow along the Scott River from station 11519500 to its confluence with the Klamath.
- f. Step 5 (lines 00000520 and 00000530) combines the routed Scott River and Klamath River flows at their confluence with each other.
- g. Step 6 (lines 00000540 to 00000560) defines model parameter information for routing the combined flows from step 5 along the final reach (14.65 miles) of the Klamath to station 11520500.
- h. Step 7 (lines 00000570 and 00000580) accounts for intervening ungaged flow by using a ratio of 1.34 times the flow at index station 11519500 and adding it to the routed Klamath flows at station 11520500.
- i. The last two steps (lines 00000590 to 00000620) use the model options COMPARE and PLOT to compute and illustrate the difference between simulated and observed flows at station 11520500.

Finally, if the user wants to perform statistical analyses such as those that are available in the Streamflow Statistics Program A969 and asssociated Log Pearson Type III Computational Program A193 then the JCL in figure D10 can be used. Step 1 (line 00000170 in fig. D10) refers to PGM=S969 which is a transformed A969 program that can read the input data in the modeling format (fig. D7). Step 2 (line 00000400 in fig. D10) activates program Al93 execution. Line 00000490 illustrates that FILE 21 is to supply input streamflow data from station 11520500. This example is for observed streamflow data at station 11520500. If streamflow statistics are to be computed for the simulated streamflow at station 11520500 then the model would have to be executed for the period of record and the simulated streamflow at station 11520500 stored in a permanent disk file. This disk file would then be input to the streamflow statistics programs for analysis. Identification of analysis time period, station identification and program options are input behind line 00000510 //STEP1.SYSIN DD *. The three data cards (lines 00000520 to 00000540 in fig. D10) are as follows:

Line 00000520--Name Card

Col. 1 - Type (always 1)

Cols. 2-9 - Station Number

Cols. 10-80 - Station Name (including all punctuation)

```
//AG40xEJH JOB (470698870, RPT, 2, ), 'H DOYLE', CLASS=8
                                                                            00000010
/*ROUTE PRINT RM046
                                                                            00000020
//* THIS JCL IS STORED IN AGAJ31J.KLAMATH.S969PROC.CNTLI
                                                                            00000030
//* AND CAN BE EXECUTED BY SIGNING ON TO THE TSO AND THEN
                                                                            00000040
//* EDIT 'AG4J31J.KLAMATH.S969PROC.CYTL' AND CHANGING
                                                                            00000050
//* INPUT DATA CARDS AS NEEDED AND THEN SUBMIT *
                                                                            00000060
//SWSTAT PROC NAMEZI="664".NAMEZZ="668".NAMEZ3="56C".
                                                                            00000070
// NAME24= 1660 . NAME25= 1666 . NAME26= 166F . NAME27= 1666 .
                                                                            00000080
// NAME28='&6H', NAME29=!$&I', NAME30='&6J',
                                                                            00000090
// COND21= ( ( PASS) + UNIT=SYSDK + COND22= + ( + PASS) + UNIT=SYSDK + +
                                                                            00000100
                                                                            00000110
// COND23=+(.PASS).UNIT=SYSDK+.COND24=+(.PASS).UNIT=SYSDK+.
// COND25=*(,PASS).UNIT=SYSDK*.COND26=*(.PASS).UNIT=SYSDK*.
                                                                            00000120
// COND27= (, PASS) .UNIT=SYSDK .COND28= (, PASS) .UNIT=SYSDK .
                                                                            00000130
// COND29=*(.PASS).UNIT=SYSDK*.COND30=*(.PASS).UNIT=SYSDK*.
                                                                            00000140
// ETC='.SPACE=(1552.1).DCB=(DSDRG=DA)!.R=
                                                                            00000150
//STEP1 EXEC PGM=S969.REGION=&R
                                                                            00000160
                                                                            00000170
//**** STREAMFLOW STATISTICS BY PROGRAM S969 *****
                                                                            00000180
//STEPLI9 DD DSN=AG4J31J.DOYLE.PGMLIBE.DISP=SHR
                                                                            00000190
11
           DD BSN=SYS1.FORTG.LINKL19X.DISP=SHR
11
           DD BSN=SYS1.PLIX.TRAV5LIB.DISP=SHR
                                                                            00000200
//SYSPRINT DD SYSOUT=A
                                                                            00000210
//LOGPEAR DD DSN=&&TEMP.UNIT=SYSDK.DISP=(NEW.PASS.DELETE).
                                                                            00000220
11
                DCB=(RECFM=VB.LRECL=512.BLKSIZE=7172).
                                                                            00000230
                SPACE=(CYL+(4+1),RLSE)
                                                                            00000240
11
//FT06F001 DD SYSOUT=A.DCB=(RECFM=FBA.LRECL=133.3LKSIZE=6118)
                                                                            00000250
//FT21F001 DD DSN=&NAME21.DISP=&COND21&ETC
                                                                            00000260
//FT22F001 DD DSN=&NAME22.DISP=&COND22&ETC
                                                                            00000270
//FT23F001 DD DSN=&NAME23.DISP=&COND23&ETC
                                                                            00000280
                                                                            00000290
//FT24F001 DD DSN=$NAME24,DISP=&COND24&ETC
                                                                            00000300
//FT25F001 DD DSN=&NAME25.DISP=&COND25&ETC
                                                                            00000310
//FTZ6F001 DD DSY=&NAME26.DISP=&COYD26&ETC
                                                                            00000320
//FT27F001 DD DSN=&NAME27.DISP=&COND27&ETC
//FT28F001 DD: DSN=&NAME28.DISP=&COVD28&ETC
                                                                            00000330
//FT29F001 DD DSN=&NAME29.DISP=&COVD29&ETC
                                                                            -00000340
//FT30F001 DD DSN=&NAME30+DISP=&COND30&ETC
                                                                            00000350
//* ILLUSTRATED IS JCL FOR ALL 10 FILES. IF LESS THAN 10 FILES ARE //* USED THEN ONLY INPUT THAT NUMBER OF DATA CARDS FOR THE NUMBER:
                                                                            00000360
                                                                            00000370
//* OF FILES ACTUALLY USED.
                                                                            00000380
//STEP2 EXEC PGM=A193.REGION=200K.TIME=3
                                                                            00000390
//**** LOG/PEARSON COMPUTATIONS BY PROGRAM 4193 *****
                                                                            00000400
.//STEPLI3: DD DSN=AG4J31J.DOYLE.PGMLIBE.DISP=SHR
                                                                            00000410
          OD DSN=SYS1.FORTG.LINKLIBX.DIS?=SHR
                                                                            00000420
11
11
          DD DSN=SYS1.PLIX.TRANSLIB.DISP=SHR
                                                                            00000430
//FT06F001 DD SYSOUT=A.DCB=(RECFM=FBA.LRECL=133.BLKSIZE=6118)
                                                                            00000440
//FT17F001 DD DSN=&&TEMP.DISP=(OLD.DELETE; DELETE)
                                                                            00000450
   PFYD
                                                                            00000460
    EXEC SWSTAT.
                                                                            00000470
11
    VAME21= 'A840XEJ.KL520500.G740FMT',COND21=SHR,
                                                                            00000450
11
   R=200K
                                                                            00000490
//STEP1.SYSIN OD .
                                                                            00000500
1115205000BSERVED FLOW ON KLAMATH R. NR. SEIAD VALLEY, CA.
                                                                            00000510
                                   792
211520500
           196010198009108000
                                                                            00000520
                                                                            00000530
31152050011 21
                     1
                                   30
                                                       1
                                                             7
                                                                  30
                                                                            00000540
/#
11
                                                                            00000550
```

Figure D10.--JCL for executing streamflow statistics programs.

Line 00000530--(First Option Card)

Col.	1 - Type (Always 2)
Cols.	2-9 - Station number
Cols.	10-12 - Blank
Cols.	13-16 - Beginning year (i.e., 1930)
Cols.	17-18 - Beginning month '10', processings limited to one or more water years of data.
Cols.	19-22 - Ending year (i.e., 1980)
Cols.	23-24 - Ending month '09', processing limited to one or more water years of data.
Note:	Columns 13-24 are left blank if the entire period is to be processed.
Cols.	<pre>25-30 - Second highest discharge of period to be processed.</pre>
Cols.	31-36 - Lowest non-zero discharge
Cols.	37-38 - Beginning month of low-flow summary if different from climatic year
Cols.	39-40 - Ending month of low-flow summary if partial year or if different from climatic year
Cols.	41-42 - Beginning month of high-flow summary if different from water year
Cols.	43-44 - Ending month of high-flow summary if partial year or if different from water year
Cols.	45-80 - Blank

Line 00000540--(Second Option Card)

- Col. 1 Type (always 3)
- Cols. 2-9 Station number
- Col. 10 '1' if all requested low-flow data (coded in columns 21-50) are to be plotted. Blank is all low-flow data are not to be plotted.
- Col. II 'I' if all high-flow data (coded in columns 51-80) are to be plotted. Blank is all high-flow data are not to be plotted.
- Cols. 12-15 File number containing data (i.e., 21 from card 00490 in fig. Dl0).
- Cols. 16-20 Blank

Cols. 34-35 - '30'

36 - Blank

Col.

Cols. 21-80 - Twenty sets of from one to three digit numbers.

The number is punched if that particular set of data is requested for a Log Pearson fit. The three columns are blank if that set of data is not to be fitted.

Cols.	21-22 - Blank	Cols.	51-52 - Blank
Col.	23 - '1'	Col.	53 - '1'
Cols.	24-25 - Blank	Cols.	54-55 - Blank
Col.	26 - '3'	Col.	56 - '3'
Cols.	27-28 - Blank	Cols.	57-58 - Blank
Col.	29 - '7'	Col.	59 - 171
Col.	30 - Blank	Col.	60 - Blank
Cols.	31-32 - '14'	Cols.	61-62 - '15'
Col.	33 - Blank	Col.	63 - Blank

Cols. 64-65 - '30'

66 - Blank

Col.

```
Cols. 67-68 - '60'
Cols. 37-38 - '60'
                                                         69 - Blank
Col.
          39 - Blank
                                               Col.
                                                     70-71 - '90'
Cols.
      40-41 - '90'
                                               Cols.
Cols.
      42-44 - '120'
                                               Cols.
                                                     72-74 - '120'
Cols. 45-47 - '183'
                                               Cols.
                                                     75-77 - '183'
Cols. 48-50 - '365'
                                               Cols. 78-80 - '365'
Note: Columns 21-50 apply to selection of low flow data.
       Columns 51-80 apply to selection of high flow data.
       Columns 10-11 and 21-80 are to be left blank if no
       Log Pearson data (statistics or plot) are requested.
    This example is for only one input file. If additional
files are input for analysis then lines similar to 00000490 and
00000520 to 00000540 have to be prepared for each file and can be
included in the data stream like this example:
        // EXEC SWSTAT,
                                                       00000480
        // NAME21='1ST FILE NAME', COND21=SHR,
                                                       00000490
        // NAME22='2ND FILE NAME', COND22=SHR,
                                                       00000491
                          Other File Names
        // R = 200K
                                                       00000500
        //STEP1.SYSIN DD *
                                                       00000510
             "1st Data Card for 1st File"
                                                       00000520
             "2nd Data Card for 1st File"
                                                       00000530
             "3rd Data Card for 1st File"
                                                       00000540
```

Data for other files

"lst Data Card for 2nd File"
"2nd Data Card for 2nd File"
"3rd Data Card for 2nd File"

CONROUT Model Run and Output

The remaining pages of this report illustrate the computer output listing for an execution of the CONROUT model for the 9-step run described in the previous sections of Appendix D. The general output format lists the following information:

- a. The period of record for which CONROUT was executed.
- b. The number of records allocated for output hydrographs.
- c. The individual step functions such as routing, plotting, etc.
- d. Options selected for each step.
- e. Method of routing selected, routing interval, reach length, and model parameters such as the wave celerity and wave dispersion coefficients.
- f. Computed unit-response function ordinates.
- g. The computed traveltime TT (for a TT = 0, no lagging of output occurs; for a TT = 24, the output is lagged by one routing interval of 24 hours, for a TT = 48, the output is lagged by two routing intervals, etc.).
- h. Simulated and observed flows with percentage of error for computed flows. In this example individual daily listings and total period summaries were generated. The final output of the COMPARE option in this example was an error distribution table.
- i. A plot of simulated and observed Klamath River streamflow at station 11520500.

UNIT RESPONSE ROUTING MODEL

FOR THE PERIOD 10 1 1979 1200 TO 9 30 1980 1200 THE FOLLOWING STEPS HAVE BEEN PERFORMED.

SPACE FOR 20 RECORDS HAS BEEN ALLOCATED FOR OUTPUT HYDROGRAPHS

00000410

00000430

THE DIFFUSION ANALOGY METHOD WITH: 1) A ROUTING INTERVAL OF 24.0 HRS.; 2) A REACH LENGTH. X = 13.00 MILES; 3) A WAVE CELERITY. CZERO = 6.38 FT./SEC.; AND 4) A WAVE DISPERSION COEFFICIENT. < = 1343.0 SQ.FT./SEC. COMPUTES A UNIT-RESPONSE FUNCTION WITH 2 ORDINATES AS FOLLOWS:

1) 0.3997 2) 0.1003

THE TRAVEL TIME, TT = 0.0 HRS.

00000440

*****STEP = .3 DATA INPUT CARDS*****

I=26.0=27.ROUTE.DIFFA

99999999 FLOW ROUTED ALONG MIDDLE OF <LAMATH
C=7.00.K=1840.X=9.15.REACH=MIDDLE ROUTED FLOW

00000460

00000480

THE DIFFUSION ANALOGY METHOD WITH: I) A ROUTING INTERVAL OF 24.0 HRS.; 2) A REACH LENGTH. X = 9.15 MILES; 3) A WAVE CELERITY. CZERO = 7.00 FT./SEC.; AND

4) A WAVE DISPERSION COEFFICIENT, K = 1840.0 S2.FT./SEC.

COMPUTES A UNIT-RESPONSE FUNCTION WITH 2 ORDINATES AS FOLLOWS:

I) 0.9002 2) 0.0999

THE TRAVEL TIME, TT = 0.0 HRS.

#####STEP = 4 OATA INPUT CARDS#####
I=23.0=28.ROUTE.DIFFA
9999999 11519500 FLOW ROUTED TO KLAMATH CONFLUENCE
C=4.67.<=459.x=18.4.REACH=11519500 TO KLAMATH

00000490

THE DIFFUSION ANALOGY METHOD WITH: 1) A ROJTING INTERVAL OF 24.0 HRS.; 2) A RACH LENGTH, x=18.40 MILES; 3) A WAVE CELERITY, CZERO = 4.67 FT./SEC.; AND 4) A WAVE DISPERSION COEFFICIENT, $\zeta=459.0$ SQ.FT./SEC. COMPUTES AS FOLLOWS:

1) 0.7979 2) 0.2021

THE TRAVEL TIME, TT = 0.0 HRS.

*****STEP = 5 OATA INPUT CARDS*****
I=27.0=28.ADD
9999999 11519500 FLOW ADDED AT CONF_UENCE

00000520

*****STEP = 6 DATA INPUT CARDS*****
I=28.0=29.ROUTE.DIFFA
11520500 FINAL ROUTED FLOW TO 11520500
C=7.44.<=2150.x=14.55.REACH=LAST REACH

00000540

00000560

THE DIFFUSION ANALOGY METHOD WITH: 1) A ROUTING INTERVAL OF 24.0 HRS.: 2) A

THE DIFFUSION ANALOGY METHOD WITH: 1) A ROUTING INTERVAL OF 24.0 HRS.; 2) A REACH LENGTH. X = 14.65 MILES; 3) A WAVE CELERITY. CZERO = 7.44 FT./SEC.; AND 4) A WAVE DISPERSION COEFFICIENT. X = 2150.0 SQ.FT./SEC.

COMPUTES A UNIT-RESPONSE FUNCTION WITH 2 ORDINATES AS FOLLOWS:

1) 0.9998 2) 0.1002

THE TRAVEL TIME. TT = 0.0 HRS.

*****STEP = 7 DATA INPUT CARDS*****
I=23,0=29,RATID=1.34,ADD
11519500 INDEXED STATION FOR UNGAGED WITH R=864/653=1.34

00000570

*****STEP = 8 DATA INPUT CARDS*****

COMPARE.F=29.S=24

COMPARISON OF SIMULATED AND OBSERVED FLOWS AT 11520500

COMPARISON OF SIMULATED AND OBSERVED FLOWS AT 11520500 00000600 FROM 10 1 1979 TO 9 30 1980 QL IS DISCHARGE AT STATION 11519500. INDEXED STATION FOR UNGAGED WITH R=864/653=1.34 QZ IS DISCHARGE AT STATION 11520500. KLAMATH RIVER NR SEIAD VALLEY CALIF

	DA:	ΤE	TIME	91	35	ERROR
				(CFS)	(CFS)	(%)
10	1	1979	12.00	1086.5	1520.0	-29.5
10	ż	1979	12.00	1421.3	1500.0	-5.2
10	3	1979	12.00	1470.0	1500.0	-5.0
10	4	1979	12.00	1458.1	1490.0	-2-1
10	5	1979	12.00	1429.5	1490.0	-4.1
10	6	1979	12.00	1415.3	1470.0	-3.7
10	7	1979	12.00	1420.2	1470.0	-3.4
10	8	1979	12.00	1433.2	1480.0	-3.2
10	9	1979	12.00	1448.3	1500.0	-3.4
10	10	1979	12.00	1452.5	1490.0	-2.5
10	11	1979	12.00	1456.4	1490.0	-2.3
10	12	1979	12.00	1463.5	1500.0	-2.4
10	13	1979	12.00	1465.9	1520.0	-3.6
10	14	1979	12.00	1471.9	1550.0	-5.0
10	15	1979	12.00	1522.9	1620.0	-5.0
10	16	1979	12.00	1531.9	1630.0	-5.0
	_			1523.4	1610.0	-5.4
10	17	1979	12.00			-5.3
10	18	1979	12.00	1518.5	1620.0	
10	19	1979	12.00	1540.0	1910.0	-14.9
10	20	1979	12.00	1573.9	1980.0	-20.5
10	21	1979	12.00	1503.4	1890.0	-15.2
10	22	1979	12.00	1528.9	1830.0	-11.0
10	23	1979	12.00	1632.7	1910.0	-14.5
10	24	1979	12.00	1677.9	2010.0	-15.5
10	25	1979	12.00	3705.7	3750.0	-1.2
10	26	1979	12.00	3368.4	3310.0	1.5
10	27	1979	12.00	2480.5	2500.0	-0.8
10	28	1979	12.00	2161.1	2280.0	-5.2
10	29	1979	12.00	2036.3	2120.0	-3.9
10	30	1979	12.00	1991.0	2070.0	-3.8
10	31	1979	12.00	1955.9	2090.0	-5.4
11	1	1979	12.00	1945.5	2030.0	-4.2
		1979		-	2000.0	-4.1
11	2		12.00	1918.1		_
11	3	1979	12.00	1928.4	2020.0	-4.5
11	4	1979	12.00	1948.5	2070.0	-5.9
11	5	1979	12.00	1973.2	2120.0	-6.9
11	6	1979	12.00	2015.4	2110.0	-4.5
11	7	1979	12.00	2124.5	2120.0	0.2
11	8	1979	12.00	2062.0	2110.0	-2.3
11	9	1979	12.00	1996.5	2030.0	-1.6
11	10	1979	12.00	1943.5	2000.0	-2.9
11	11	1979	12.00	1924.5	1960.0	-1.9
11	12	1979	12.00	1941.7	1930.0	0.6
11	13	1979	12.00	1866.2	1910.0	-2.3
īī	14	1979	12.00	1946.2	1890.0	-2.3
ii	15	1979	12.00	1833.9	1880.0	-2.5
ii	16	1979	12.00	2114.1	2130.0	-0.7
11	17	1979	12.00	3119.7	3010.0	3.5
		1979		2940.9	2910.0	-2.4
11	18		12.00			
11	19	1979	12.00	2486.0	2570.0	-3.3

COMPARISON OF SIMULATED AND OBSERVED FLOWS AT 11520500 00000600 FROM 10 1 1979 TO 9 30 1980 001 IS DISCHARGE AT STATION 11519500. INDEXED STATION FOR UNGAGED WITH RE864/653=1.34 QZ IS DISCHARGE AT STATION 11520500. < LAMATH RIVER NR SEIAD VALLEY CALIF

	DA	τE	TIME	Q 1	35	ERROR
				(CFS)	(CFS)	(%)
11	50	1979	12.00	2269.4	2370.0	-4.2
11	21	1979	12.00	2157.3	2250.0	-4.1
11	22	1979	12.00	2164.7	2340.0	-7.5
11	23	1979	12.00	2347.2	2580.0	-9.0
11	24	1979	12.00	5754.5	5240.0	9.8
11	25	-	12.00	6905.3	6470.0	5.7
11	26 27	1979	12.00 12.00	5017.5 3927.1	4350.0 3560.0	15.3 10.3
11	28	1979	12.00	3388.4	3110.0	9.0
11	59	1979	12.00	3084.5	2880.0	7.1
ii	30	1979	12.00	2884.3	2730.0	5.7
12	1	1979	12.00	2744.7	2610.0	5.2
12	ž	1979	12.00	4717.2	3860.0	55.5
12	3	1979	12.00	8558.2	8470.0	1.0
12	4	1979	12.00	6210.7	5710.0	9.8
12	5	1979	12.00	5130.9	4920.0	4.3
12	6	1979	12.00	4499.3	4350.0	3.4
12	7	1979	12.00	4029.0	3990.0	1.0
12	8	1979	12.00	3646.9	3510.0	3.9
12	9	1979	12.00	3440.7	3330.0	3.3
12	10	1979	12.00	3242.1	3200.0	1.3
12	11	1979	12.00	3006.0	2980.0	4.4
12	12	1979	12.00	2943.7	2740.0	3.8
12	13	1979	12.00	2724.0	2650.0	2.8
12	14	1979	12.00	2628.9	2570.0	2.3
12	15	1979	12.00	2569.1	2510.0	2.4
12	16	1979	12.00	2506.2	2450.0	2.3
12	17	1979	12.00	2462.1	2410.0	5•5
12	18	1979	12.00	2422.5	2380.0	1.8
12	19	1979	12.00	2405.7	2400.0	0 • 2
12	20	1979	12.00	2409.9	2400.0	0 • 4
12	21	1979	12.00	2546.3	2630.0	-3.2
12	22	1979	12.00	2564.8	2620.0	-2 • 1
15	53	1979	12.00	2507.0	2620.0	-4.3
12	24	1979	12.00	2516.9	2720.0	-7.5
12	25	1979	12.00	2538.5	2720.0	-5.7
12	26	1979	12.00	2506.2	2630.0	-4.7
12	27	1979	12.00	2471.1	2550.0	-3.1
12	28	1979	12.00	2419.1	2490.0	-2.8
12	29	1979	12.00	2389.5	2450.0	-2.5
12	30	1979	12.00	2443.9	2510.0	-5.6
15	31	1979	12.00	2838.9	3000.0	-5.4
1	1	1980	12.00	3171.0	3350.0	-5.3
1	2	1980	12.00	3156.9	3480.0	-9.3
1	3	1980	12.00	2911.9	3080.0	-5.5
1	4	1980	12.00	2795.3	2930.0	-4.6
1 1	5 6	1980 1980	12.00 12.00	2997.7 3363.5	2980.0 3400.0	-2.8
1	7	1980	12.00	3394.1	3340.0	-1.1
1	8	1980	12.00	3502.2	3480.0	1.6
	0	4 70 0	15.00	230505	2400.0	0 • 6

COMPARISON OF SIMULATED AND OBSERVED FLOWS AT 11520500 00000600 FROM 10 1 1979 TO 9 30 1980

Q1 IS DISCHARGE AT STATION 11519500. INDEXED STATION FOR UNGAGED WITH R=864/653=1.34

Q2 IS DISCHARGE AT STATION 11520500. KLAMATH RIVER NR SEIAD VALLEY CALIF

	DATE	TIME	91	35	ERROR
			(CFS)	(CFS)	(%)
1	9 1980	12.00	3511.9	3540.0	-0 - 8
1	10 1980	12.00	3653.9	3620.0	0 • 9
1	11 1980	12.00	3647.0	3600.0	1.3
1	12 1980	12.00	14957.7	15200.0	-1.6
1	13 1980	12.00	32981.5	30400.0	9.5
l	14 1980	12.00	33979.1	35200.0	-3.5
1	15 1980	12.00	22915.3	55000.0	4.2
1	16 1980	12.00	16817.3	16000.0	5.1
1	17 1980	12.00	15289.5	14900.0	5.6
1	18 1980	12.00	12901.3	12400.0	4.0
1	19 1980	12.00	11124.9	10500.0	5.0
1	20 1980	12.00	10018.2	9710.0	3.2
1	21 1980	12.00	9131.7 8462.9	8760.0 8230.0	4.2
ì	23 1980	12.00 12.00	7783.8	7510.0	2.8 3.6
ì	24 1980	12.00	6950.5	6710.0	2.1
i	25 1980	12.00	6253.3	5900.0	5.0
i	26 1980	12.00	6009.5	5870.0	2.4
i	27 1980	12.00	5837.7	5700.0	2.4
i	28 1980	12.00	5547.5	5530.0	0.3
i	29 1980	12.00	5217.5	5330.0	-2.1
ì	30 1980	12.00	5130.3	5230.0	-1.9
ī	31 1980	12.00	5177.0	5320.0	-2.7
2	1 1980	12.00	5143.9	5310.0	-3 • 1
2	2 1980	12.00	5209.2	5370.0	-3.0
2	3 1980	12.00	7271.4	7060.0	3.0
2	4 1980	12.00	7486.7	7360.0	1.7
2	5 1980	12.00	6726.9	6540.0	2.9
5	6 1980	12.00	6517.1	6340.0	5.8
2	7 1980	12.00	6187.5	6000.0	3.1
2	8 1980	12.00	6021.7	5950.0	1.2
5	9 1980	12.00	5861.0	5830.0	0 • 5
2	10 1980	12.00	5687.7	5690.0	-0.0
2	11 1980	12.00	5473.3	5570.0	-1.7
2	12 1980	12.00	4761.9	5080.0	-6.3
2	13 1980	12.00	4069.5	4020.0	1.2
2	14 1980	12.00	3934.2	3810.0	0.6
2	15 1980	12.00	3744.5	3750.0	-0 - 1
2	16 1980 17 1980	12.00	3777.5	3710.0	1.8
5	18 1980	12.00 12.00	4742.2 9779.4	4130.0 7510.0	14.8 30.2
5	19 1980	12.00	11158.1	8670.0	29.7
S	20 1980	12.00	11958.4	9930.0	19.4
S	21 1980	12.00	11145.7	10500.0	5.1
S	22 1980	12.00	10548.9	10000.0	5.5
S	23 1980	12.00	9766.5	9370.0	4.2
ž	24 1980	12.00	9167.2	8900.0	3.0
Š	25 1980	12.00	8939.9	8690.0	1.7
5	26 1980	12.00	8871.9	8690.0	2.1
2	27 1980	12.00	9532.5	8940.0	5 • 6

COMPARISON OF SIMULATED AND OBSERVED FLOWS AT 11520500 00000600 FROM 10 1 1979 TO 9 30 1980 Q1 IS DISCHARGE AT STATION 11519500. INDEXED STATION FOR UNGAGED WITH R=864/653=1.34 Q2 IS DISCHARGE AT STATION 11520500. < LAMATH RIVER NR SEIAD VALLEY CALIF

DATE	TIME	91	35	ERROR
		(CFS)	(C=5)	(%)
2 28 1980	12.00	12643.1	11000.0	14.9
2 29 1980	12.00	10918.0	9700.0	12.6
3 1 1980	12.00	9750.1	8980.0	9.6
3 2 1980	12.00	9108.0	8630.0	5.5
3 3 1980	12.00	8598.9	8420.0	2.1
3 4 1980	12.00	7986.5	7690.0	3.9
3 5 1980	12.00	7489.9	7510.0	-0.3
3 6 1980	12.00	6753.7	6690.0	1.0
3 7 1980	12.00	6285.1	6310.0	-0.4
3 8 1980	12.00	6022.9	6080.0	-0.9
3 9 1980	12.00	5932.5	5920.0	-1.5
3 10 1980	12.00	5587.5	5790.0	-1.8
3 11 1980	12.00	5575.9	5740.0	-2.9
3 12 1980	12.00	5465.8	5610.0	-5.6
3 13 1980	12.00	5464.9	5730.0	-4.6
3 14 1980	12.00	6237.9	6870.0	-9.2
3 15 1980	12.00	6319.3	7190.0	-12.1
3 16 1980	12.00	5815.2	6420.0	-9.4
3 17 1980	12.00	5846.7	6230.0	-5.2
3 18 1980	12.00	6302.4	7140.0	-11.7
3 19 1980	12.00	5980.7	6730.0	-11.1
3 20 1980	12.00	5586.3	6200.0	-9.9
3 21 1980	12.00	5444.0	6070.0	-10.3
3 22 1980	12.00	5358.4	5950.0	-9.9
3 23 1980	12.00	5295.1	5910.0	-10.4
3 24 1980	12.00	5141.7	5780.0	-11.0
3 25 1980	12.00	4923.5	5540.0	-11.1
3 26 1980	12.00	4309.8	4740.0	-9.1
3 27 1980	12.00	3958.1	4350.0	-9.0
3 28 1980	12.00	3653.9	3960.0	-7.7
3 29 1980	12.00	3545.4	3830.0	-7.4
3 30 1980	12.00	3494.9	3780.0	-7.5
3 31 1980	12.00	3499.5	3770.0	-7.2
4 1 1980	12.00	3520.5	3700.0	-4.9
4 2 1980	12.00	3496.5	3620.0	-3.4
4 3 1980	12.00	3360.0	3600.0	-6.7
4 4 1980	12.00	3187.1	3360.0	-5·1
4 5 1980	12.00	3232.0	3400.0	-4.9
4 6 1980 4 7 1980	12.00	3393.7	3540.0	-4.1
	12.00	3309.3	3440.0	-3.A
4 8 1980 4 9 1980	12.00	3205.0	3380.0	-5.2 -9.5
	12.00	3293.5	3600.0	
4 10 1980 4 11 1980	12.00	3381.9	3600.0	-5·1
4 12 1980	12.00	3383.0 3489.4	3510.0	-3.6 -5.5
4 13 1980	12.00	3608.9	3730.0 3950.0	-5.3
4 14 1980	12.00 12.00	3783.4	3950.0	-4.2
4 15 1980	12.00	3872.3	3940.0	-1.7
4 16 1980	12.00	3844.9	3910.0	-1.7
4 17 1980	12.00	4009.7	4000.0	0.5
· 1 · 1700	15.00	700701	-0000	0 • 6

COMPARISON OF SIMULATED AND OBSERVED FLOWS AT 11520500 00000600 FROM 10 1 1979 TO 9 30 1980 Q1 IS DISCHARGE AT STATION 11519500. INDEXED STATION FOR UNGAGED WITH RE864/653=1.34 Q2 IS DISCHARGE AT STATION 11520500. LAMATH RIVER NR SEIAD VALLEY CALIF

DATE	TIME	91	35	ERROR
DATE	1	(CFS)	(CFS)	(%)
4 18 1980	12.00	4327.1	4150.0	4.3
4 19 1980	12.00	4569.3	4320.0	5.8
4 20 1980	12.00	5391.0	4900.0	10.0
4 21 1980	12.00	6180.2	5460.0	13.2
4 22 1980	12.00	5565.9	4980.0	11.9
4 23 1980	12.00	5357.5	5190.0	3.2
4 24 1980	12.00	5046.7	4800.0	5.1
4 25 1980	12.00	4661.4	4570.0	5 • 0
4 26 1980	12.00	4421.4	4200.0	5.3
4 27 1980	12.00	4533.5	4270.0	5.2
4 28 1980	12.00	5005.5	4520.0	10-7
4 29 1980	12.00	5404.5	5070.0	5.5
4 30 1980	12.00	5414.5	4920.0	10.1
5 1 1980	12.00	5273.9	5180.0	1.8
5 2 1980	12.00	5125.1	5090.0	0.7
5 3 1980	12.00	5085.0	5180.0	-1.8
5 4 1980	12.00	5193.1	5430.0	-4.4
5 5 1980	12.00	5292.2	5570.0	-5.0
5 6 1980	12.00	5022.7	5600.0	-10.3
5 7 1980	12.00	4400.5	4800.0	-8.3
5 8 1980	12.00	3988.7	4260.0	-5.4
5 9 1980	12.00	3922.5	4040.0	-5.4
5 10 1980	12.00	3805.9	3880.0	-1.9
5 11 1980	12.00	3704.7	3650.0	1.5
5 12 1980	12.00	3553.2	3530.0	0.7
5 13 1980	12.00	3589.4	3420.0	5.0
5 14 1980	12.00	3704.0	3610.0	2.5
5 15 1980	12.00	3869.2	3730.0	3.7
5 16 1980	12.00	4051.5	4110.0	-1.4
5 17 1980	12.00	3733.5	3780.0	-1.2
5 18 1980	12.00	3563.4	3670.0	-2.9
5 19 1980	12.00	3606.9	3730.0	-3.3
5 20 1980	12.00	3660.5	3840.0	-4.7
5 21 1980	12.00	3577.9	4030.0	-11.2
5 22 1980	12.00	3113.3	3670.0	-15.2
5 23 1980	12.00	2787.2	3130.0	-11.0
5 24 1980	12.00	2636.3	2930.0	-10.0
5 25 1980	12.00	2559.4	2850.0	-10-2
5 26 1980	12.00	2473.1	2710.0	-9.7
5 27 1980	12.00	2389.7	2610.0	-9.4
5 28 1980	12.00	2335.3	2560.0	-9.8
5 29 1980	12.00	2299.5	2490.0	-7.6
5 30 1980	12.00	2274.0	2490.0	-9.7
5 31 1980	12.00	2255.7	2470.0	-9.7
6 1 1980	12.00	2062.5	2380.0	-13.3
5 2 1980	12.00	1993.4	2230.0	-10.6
6 3 1980	12.00	2018.0	2190.0	-7.9
6 4 1980	12.00	2106.0	2180.0	-3.4
6 5 1980	12.00	2284.8	2320.0	-1.5
6 6 1980	12.00	2363.3	2380.0	-0.7

)

COMPARISON OF SIMULATED AND DESERVED FLOWS AT 11520500 00000600 FROM 10 1 1979 TO 9 30 1980 01 IS DISCHARGE AT STATION 11519500+ INDEXED STATION FOR UNGAGED WITH R=864/653=1.34 02 IS DISCHARGE AT STATION 11520500+ KLAMATH RIVER NR SEIAD VALLEY CALIF

DATE	TIME	01	35	ERROR
		(CFS)	(CFS)	(%)
6 7 1980	12.00	2247.3	2260.0	-0-6
6 8 1980	12.00	2169.1	2210.0	-1.9
6 9 1980	12.00	2184.9	2230.0	-5.0
6 10 1980	12.00	2193.1	2210.0	-0-9
6 11 1980 6 12 1980	12.00	2117.5 2176.2	2140.0	-1 - 1
	12.00	2319.9	2160.0	0.7 4.0
6 13 1980 6 14 1980	12.00 12.00	2313.0	2230.0 2320.0	9.3
5 15 1980	12.00	2408.9	2310.0	4.3
6 16 1980	12.00	2279.2	2210.0	3.1
6 17 1980	12.00	2228.9	2160.0	3.5
6 18 1980	12.00	2243.5	2130.0	5.3
6 19 1980	12.00	2212.9	2110.0	4.9
6 20 1990	12.00	2151.0	2100.0	2.4
6 21 1980	12.00	2049.4	2000.0	2.5
5 22 1980	12.00	1995.7	1920.0	3.9
5 23 1980	12.00	2044.9	2020.0	1.2
6 24 1980	12.00	1825.0	1940.0	-5.9
6 25 1980	12.00	1598.7	1730.0	-1.8
6 26 1980	12.00	1594.7	1690.0	-5•6
6 27 1980	12.00	1524.4	1660.0	-8.2
6 28 1980	12.00	1476.8	1610.0	-8 • 3
6 29 1980	12.00	1466.2	1600.0	-9.4
6 30 1980	12.00	1478.1	1580.0	-5.4
7 1 1980	12.00	1443.1	1550.0	-6.9
7 2 1980	12.00	1381.9	1510.0	-8.5
7 3 1980	12.00	1343.1	1500.0	-10.5
7 4 1980	12.00	1305.1	1490.0	-12.4
7 5 1980	12.00	1277.5	1460.0	-12.5
7 6 1980	12.00	1238.5	1440.0	-14.0
7 7 1980	12.00	1203.5	1430.0	-15.8
7 8 1980	12.00	1156.0	1400.0	-17.4
7 9 1980	12.00	1118.9	1370.0	-18.3
7 10 1980 7 11 1980	12.00	1091.4	1370.0	-20.3
7 11 1980 7 12 1980	12.00 12.00	1084.9 1047.5	1370.0 1300.0	-20.8 -19.4
7 13 1980	12.00	1027.9	1280.0	-19.7
7 14 1980	12.00	1013.4	1250.0	-19.9
7 15 1980	12.00	1002.3	1230.0	-18.5
7 16 1980	12.00	998.0	1220.0	-18.2
7 17 1980	12.00	990.5	1190.0	-16.8
7 18 1980	12.00	971.9	1160.0	-15.2
7 19 1980	12.00	962.5	1140.0	-15.6
7 20 1980	12.00	971.4	1130.0	-14.0
7 21 1980	12.00	962.5	1100.0	-12.5
7 22 1980	12.00	962.5	1080.0	-10-9
7 23 1980	12.00	938.1	1040.0	-9.5
7 24 1980	12.00	922.5	1020.0	-9.5
7 25 1980	12.00	913.1	999.0	-9.6
7 26 1980	12.00	907.5	980.0	-7.4

COMPARISON OF SIMULATED AND OBSERVED FLOWS AT 11520500 00000600 FROM 10 1 1979 TO 9 30 1980
Q1 IS DISCHARGE AT STATION 11519500. INDEXED STATION FOR UNGAGED WITH R=864/653=1.34
Q2 IS DISCHARGE AT STATION 11520500. < LAMATH RIVER NR SEIAD VALLEY CALIF

DATE	TIME	91	35	ERROR
•		(CFS)	(C=5)	(%)
7 27 1980	12.00	904.5	984.0	-9.1
7 28 1980	12.00	922.1	1010.0	-8.7
7 29 1980	12.00	940.0	1030.0	-9.7
7 30 1980	12.00	939.1	1030.0	-9.9
7 31 1980	12.00	937.5	1010.0	-7.2
8 1 1980	12.00	1136.3	1100.0	3.3
8 2 1980	12.00	1197.4	1300.0	-7.9
8 3 1980	12.00	1193.5	1290.0	-7.5
8 4 1980	12.00	1182.0	1270.0	-5.9
8 5 1 9 8 0	12.00	1179.7	1260.0	-6.4
8 6 1980	12.00	1180.0	1560.0	-6.3
8 7 1980	12.00	1182.3	1260.0	-6.2
8 8 1980	12.00	1173.1	1250.0	-5-1
8 9 1980	12.00	1173.4	1250.0	-5-1
8 10 1980	12.00	1179.1	1260.0	-5-4
8 11 1980	12.00	1181.3	1260.0	-6.2
9 12 1980	12.00	1175.1	1250.0	-6.0
8 13 1980	12.00	1166.3	1230.0	-5.1
8 14 1980	12.00	1165.3	1230.0	-5.3
8 15 1980	12.00	1160.3	1230.0	-5.6 -4.0
8 16 1980	12.00	1161.2	1210.0	-4.8
8 17 1980	12.00	1161.9	1220.0	-5.5
8 18 1980 8 19 1980	12.00 12.00	1152.9 1146.2	1210.0	-5.3
8 19 1980 8 20 1980	12.00	1144.2	1220.0	-6.2
8 21 1980	12.00	1141.0	1200.0	-4.9
8 22 1980	12.00	1141.0	1180.0	-3.3
8 23 1980	12.00	1157.4	1200.0	-3.5
8 24 1980	12.00	1155.4	1510.0	-4.5
8 25 1980	12.00	1162.9	1210.0	-3.9
8 26 1980	12.00	1161.1	1210.0	-4.0
8 27 1980	12.00	1153.7	1200.0	-3.9
8 28 1980	12.00	1158.9	1210.0	-4.2
8 29 1980	12.00	1169.0	1220.0	-4.2
8 30 1980	12.00	1172.7	1240.0	-5.4
8 31 1980	12.00	1177.2	1230.0	-4.3
9 1 1980	12.00	1381.0	1320.0	4.6
9 2 1980	12.00	1443.5	1500.0	-3.7
9 3 1980	12.00	1449.1	1500.0	-3.4
9 4 1980	12.00	1456.4	1510.0	-3.5
9 5 1980	12.00	1454.3	1520.0	-4.3
9 6 1980	12.00	1453.4	1500.0	-3.1
9 7 1980	12.00	1462.1	1490.0	-1.9
9 8 1980	12.00	1470.9	1510.0	-2.6
9 9 1980	12.00	1459.4	1510.0	-3.4
9 10 1980	12.00	1466.9	1500.0	-5.5
9 11 1980	12.00	1497.4	1510.0	-0.8
9 12 1980	12.00	1499.9	1560.0	-3.9
9 13 1980	12.00	1501.3	1550.0	-3·1
9 14 1980	12.00	1507.2	1560.0	-3.4

COMPARISON OF SIMULATED AND DESERVED FLOWS AT 11520500 00000600 FROM 10 1 1979 TO 9 30 1980
Q1 IS DISCHARGE AT STATION 11519500. INDEXED STATION FOR UNGAGED WITH R=864/653=1.34 Q2 IS DISCHARGE AT STATION 11520500, KLAMATH RIVER NR SEIAD VALLEY CALIF

	DATE	TIME	91	35	ERROR
			(CFS)	(CF5)	(%)
9	15 1980	12.00	1497.2	1560.0	-4.0
9	16 1980	12.00	1468.9	1530.0	-4.0
9	17 1980	12.00	1452.0	1490.0	-2.5
9	18 1980	12.00	1463.9	1510.0	-3.1
9	19 1980	12.00	1466.2	1520.0	-3.5
9	20 1980	12.00	1463.0	1520.0	-3.8
9	21 1980	12.00	1471.2	1520.0	-3.2
9	22 1980	12.00	1495.8	1540.0	-2.9
9	23 1980	12.00	1520.5	1560.0	-2.5
9	24 1980	12.00	1519.1	1560.0	-2.6
9	25 1980	12.00	1524.1	1560.0	-2.3
9	26 1980	12.00	1525.1	1560.0	-2.2
9	27 1980	12.00	1523.9	1560.0	-2.3.
9	28 1980	12.00	1525.5	1560.0	-5.5
9	29 1980	12.00	1520.5	1550.0	-1.9
9	30 1980	12.00	1516.0	1550.0	-2.2

****** 1980 WY SUMMARY *****

MEAN ERROR (%) FOR 366 DAYS = 5.80

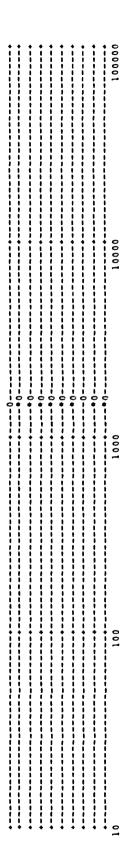
MEAN - ERROR (\overline{x}) FOR 253 DAYS = -6.17

MEAN + ERROR (\overline{x}) FOR 113 DAYS = 4.97

21 VOLJME (SFD) = 1321710.

22 VOLUME (SFD) = 1325723.

VOLUME ERROR (\overline{x}) = -0.30


RMS ERROR (\overline{x}) = 7.57

56 PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 5 PERCENT 84 PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 10 PERCENT 93 PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 15 PERCENT 98 PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 20 PERCENT 1 PERCENT OF TOTAL OBSERVATIONS HAD ERRORS <= 25 PERCENT 1 PERCENT OF TOTAL OBSERVATIONS HAD ERRORS >= 25 PERCENT 1 PERCENT OF TOTAL OBSERVATIONS HAD ERRORS >= 25 PERCENT

*****STEP = 9 DAT4 INPUT CARDS*****
PLOT.F=29.S=24.QMIN=10
PLOT OF SIMULATED AND OBSERVED FLOWS 4T 11520500

F SIMULATED AND	1500	00000620
• = OISCHARGE AT STATIO 0 = DISCHARGE AT STATIO	ED STATION FOR UNGAGED WI TH RIVER NR SEIAD VALLEY	WITH 9=864/653=1.34 EY CALIF
	JISCHARGE.CFS 1000	10000
# 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	-0	
	-0	
	10:2::•==================================	4 9 5 6 6 6 8 6 8 9 8 9 8 9 6 6 8 8 8 8 8 8 8
	0	***************************************
		中国家教学教育 医唇囊 电电影 医电子 医电子 医电子 医电子 医电子 医电子 医电子 医医子宫 医马耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳耳
		中国中央市场中央市场中央市场市场市场市场市场市场市场市场市场市场市场市场市场市场市场

** ** * * * * * * * * * * * * * * * * *	••••••••••••	
	• • • • • • • • • • • • • • • • • • •	
	\$ 1 \$ 2 \$ \$ \cdot 1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
** ** ** ** ** * * * * * * * * * * * * *		
• • • • • • • • • • • • • • • • • • • •		

```
0.
0-**
```


DISCHARGE, CFS